CINS 370
Sample Final Exam for Review

Dr. Melody Stapleton

Directions: This test is open book and notes. Show your work on all problems, giving any (reasonable) assumptions. 100 total points. Points per problem are listed in parentheses in front of each problem. Five total pages.

1. (25 points total) Use the schedule below to answer the following subparts to this question. You may assume that at time 12 none of the transactions is complete yet, i.e. none have reached their end of transaction:

<table>
<thead>
<tr>
<th>Time</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Read(A) Read(B) Read(C) Write(B) Write(C) Read(A) Read(B) Write(B)

a) (10 points) Draw the precedence graph for the above schedule. Is the above schedule conflict-serializable? Why or why not?

b) (15 points) Using timestamping as a technique to control concurrency, trace through what would happen using the schedule above. Show all transaction and read and write timestamps and explain what would happen with each advance of time:

T5(T1) = 5 T5(T2) = 2 T5(T3) = 1

T5(T5) = 5 T5(B) = 2

At time T = 8
T3 issues write(A)
but readT5(A) = 2 > 1
so abort T3

1 of 6
12/15/2009 4:59 PM
2a) SELECT C.COURSENAMEx, S.SECTIONIDENTIFIER, COUNT(G.STUDENTNUMBER)
FROM COURSE C JOIN SECTION S JOIN
GRADEREPOR T G
WHERE S.SEMESTER = 'Fall' AND
S.YEAR = 2002
GROUP BY C.COURSENAMEx, S.SECTIONIDENTIFIER

2b) SELECT DISTINCT C.COURSENAMEx, C.COURSENUMBER
FROM COURSE C JOIN SECTION S
WHERE S.INSTRUCTOR = 'Hilzer' AND
S.SEMESTER = 'Fall' AND S.YEAR = 1997
ORDER BY C.COURSENUMBER
4. (15 points) For the parallel schedule given below for transactions T1, T2 and T3 : Trace through the schedule below and show where deadlock occurs using a rigorous two-phase locking scheme. Assume that a locking scheme of upgradable locks is used. I.e., when one wants to read a data item, they ask for a shared lock, when they want to write that same data item later on, they request an exclusive lock. Explain how the wait-die scheme for deadlock prevention would prevent deadlock from occurring.

<table>
<thead>
<tr>
<th>time</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>read(A)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SLK</td>
<td>read(B)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SLK</td>
<td>read(X)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SLK</td>
<td>read(A)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>write(B)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>write(A)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>wait</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SLK</td>
<td>read(X)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>write(X)</td>
<td>wait</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>write(A) - EOT</td>
<td>read(B) - EOT</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>read(Y) - EOT</td>
<td>wait</td>
</tr>
</tbody>
</table>

- At t=6 T2 requests XLOCK on A but since T1 has an SLCK on A T2 is required to wait.
- At t=9 T1 requests XLOCK on X but since T3 has an SLCK on X T1 is required to wait.
- At t=10 T3 requests an SLCK on B but since T2 has an XLOCK T3 is required to wait.

Deadlock occurs at time 10.

Wait-die: TS(T2) = 1, TS(T3) = 3, TS(T1) = 7

At time t=6 since T2 is older; it is allowed to wait.
At time t=9 since T1 is older than T3 it is allowed to wait.
At time t=10 since T3 is younger than T2, T3 is rolled back and restarted with the same time stamp.
5. (20 points) The following list represents the log entries for four transactions T1, T2, T3, and T4 at the point of a system crash. Suppose that the immediate update protocol with checkpointing has been used. Describe the recovery process from the point of the system crash. Describe how recovery occurs in this situation. Suppose that the initial values of variables are X=45, Y=65, A=70, B=25. What are the values of each of these variables after recovery takes place? Is this a recoverable schedule? Is there any cascading rollback? At the end of your recovery, in giving the values of variables, assume only undo and redo has occurred, but no fail transactions have been rerun as yet.

NOTE: The form of the write statements in the log is: [write_item, transaction_no, variable, old_value, new_value]

```
[start_transaction, T4]
[read_item, T4, A]
[start_transaction, T1]
[write_item, T4, A, 70, 75]
[read_item, T4, B]
[start_transaction, T3]
[read_item, T3, X]
[write_item, T3, X, 45, 55]
[start_transaction, T2]
[write_item, T4, B, 25, 30]
[read_item, T2, B]
[read_item, T1, X]
[read_item, T1, Y]
[commit T4]
[write_item, T2, B, 30, 92]
[checkpoint; L = T1, T2, T3]
[read_item, T2, A]
[write_item, T2, A, 75, 23]
[commit T2]
[read_item, T1, Y]
[write_item, T1, Y, 65, 82]
[write_item, T1, X, 55, 77]
[commit T3]
```

```
  X  Y  A  B
45  65  70  25
55  82  35  36
75  65  23  92
```

1) committed before checkpoint
2) Active List: T1, T2, T3
 Redo list: T2, T3
 Undo list: T1
 a) After undo:

```
  X  Y  A  B
55  65  23  92
```

b) Values are same as above after redoing T2, T3
3) Schedule is recoverable since no committed transactions need to be rolled back.

4) No cascading rollback since no other transaction reads values written by T1

More Practice! Here is another Immediate Update Problem:

The following list represents the log entries for four transactions: T1, T2, T3, and T4 at the point of a system crash. Suppose that the immediate update protocol with checkpointing has been used. Describe the recovery process from the point of the system crash. Describe how recovery occurs in this situation. Suppose the initial values of variables are X=30, Y=10, A=20, B=50. Is this a recoverable schedule? What are the values of each of these variables after recovery takes place? Is there any cascading rollback? At the end of your recovery, in giving the values of variables, assume...
only undo and redo has occurred, but no failed transactions have been rerun as yet.

Note: the form of the write statements in the log is: [write_item, transaction_num, variable, old_value, new_value]

Start of log...
[start_transaction, T2]
[read_item, T2, X]
[start_transaction, T3]
[write_item, T2, X, 30, 40]
[read_item, T2, Y]
[read_item, T3, X]
[write_item, T2, Y, 10, 20]
[read_item, T3, Y]
[commit, T2]
[start_transaction, T1]
[start_transaction, T4]
[read_item, T1, A]
[write_item, T1, A, 20, 30]
[checkpoint, L= {T4, T3, T1}]
[read_item, T3, A]
[read_item, T4, B]
[write_item, T3, A, 30, 35]
[write_item, T4, B, 50, 60]
[commit, T4]
[read_item, T1, B]
[write_item, T1, B, 60, 70]
<----------------------------- system crash

1) Committed before checkpoint: T2, so do nothing.

2) Active List = T4, T3, T1
 Redo: T4
 Undo: T1, T3
 a) After undo:
 \[\begin{array}{c|c|c|c|c}
 & X & Y & A & B \\
 \hline
 30 & 40 & 20 & 30 & 60 \\
 35 & 20 & 60 & 2,0
 \end{array} \]
 b) Redoing T4; values already reflected above

3) Recoverable since no committed transaction need to be rolled back.

4) Cascading rollback occurs since T3 read the value written by T1 for A.

Return to Melody's Home Page.