Chapter 4

Enhanced Entity-Relationship (EER) Modeling
Chapter Outline

- EER stands for Enhanced ER or Extended ER
- EER Model Concepts
 - Includes all modeling concepts of basic ER
 - Additional concepts:
 - subclasses/superclasses
 - specialization/generalization
 - categories (UNION types)
 - attribute and relationship inheritance
 - These are fundamental to conceptual modeling
- The additional EER concepts are used to model applications more completely and more accurately
 - EER includes some object-oriented concepts, such as inheritance
Subclasses and Superclasses (1)

- An entity type may have additional meaningful subgroupings of its entities
 - Example: EMPLOYEE may be further grouped into:
 - SECRETARY, ENGINEER, TECHNICIAN, ...
 - Based on the EMPLOYEE’s Job
 - MANAGER
 - EMPLOYEES who are managers
 - SALARIED_EMPLOYEE, HOURLY_EMPLOYEE
 - Based on the EMPLOYEE’s method of pay
 - EER diagrams extend ER diagrams to represent these additional subgroupings, called *subclasses* or *subtypes*
Subclasses and Superclasses

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Figure 4.1
EER diagram notation to represent subclasses and specialization.
Subclasses and Superclasses (2)

- Each of these subgroupings is a subset of EMPLOYEE entities
- Each is called a subclass of EMPLOYEE
- EMPLOYEE is the superclass for each of these subclasses
- These are called superclass/subclass relationships:
 - EMPLOYEE/SECRETARY
 - EMPLOYEE/TECHNICIAN
 - EMPLOYEE/MANAGER
 - ...

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe
Subclasses and Superclasses (3)

- These are also called IS-A relationships
 - SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A EMPLOYEE,

- Note: An entity that is member of a subclass represents the same real-world entity as some member of the superclass:
 - The subclass member is the same entity in a distinct specific role
 - An entity cannot exist in the database merely by being a member of a subclass; it must also be a member of the superclass
 - A member of the superclass can be optionally included as a member of any number of its subclasses
Subclasses and Superclasses (4)

- **Examples:**
 - A salaried employee who is also an engineer belongs to the two subclasses:
 - ENGINEER, and
 - SALARIED_EMPLOYEE
 - A salaried employee who is also an engineering manager belongs to the three subclasses:
 - MANAGER,
 - ENGINEER, and
 - SALARIED_EMPLOYEE
 - It is not necessary that every entity in a superclass be a member of some subclass
Figure 4.4
EER diagram notation for an attribute-defined specialization on Job_type.
Attribute Inheritance in Superclass / Subclass Relationships

- An entity that is member of a subclass *inherits*
 - All attributes of the entity as a member of the superclass
 - All relationships of the entity as a member of the superclass

- Example:
 - In the previous slide, SECRETARY (as well as TECHNICIAN and ENGINEER) inherit the attributes Name, SSN, …, from EMPLOYEE
 - Every SECRETARY entity will have values for the inherited attributes
Specialization (1)

- Specialization is the process of defining a set of subclasses of a superclass.
- The set of subclasses is based upon some distinguishing characteristics of the entities in the superclass.
 - Example: \{SECRETARY, ENGINEER, TECHNICIAN\} is a specialization of EMPLOYEE based upon \textit{job type}.
 - May have several specializations of the same superclass.
Specialization (2)

- Example: Another specialization of EMPLOYEE based on method of pay is \{SALARIED_EMPLOYEE, HOURLY_EMPLOYEE\}.
 - Superclass/subclass relationships and specialization can be diagrammatically represented in EER diagrams
 - Attributes of a subclass are called specific or local attributes.
 - For example, the attribute TypingSpeed of SECRETARY
 - The subclass can also participate in specific relationship types.
 - For example, a relationship BELONGS_TO of HOURLY_EMPLOYEE
Specialization (3)

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Figure 4.1
EER diagram notation to represent subclasses and specialization.
Generalization

- Generalization is the reverse of the specialization process
- Several classes with common features are generalized into a superclass;
 - original classes become its subclasses
- Example: CAR, TRUCK generalized into VEHICLE;
 - both CAR, TRUCK become subclasses of the superclass VEHICLE.
 - We can view \{CAR, TRUCK\} as a specialization of VEHICLE
- Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK
Generalization (2)

Figure 4.3

Generalization. (a) Two entity types, CAR and TRUCK. (b) Generalizing CAR and TRUCK into the superclass VEHICLE.
Generalization and Specialization (1)

- Diagrammatic notation are sometimes used to distinguish between generalization and specialization
 - Arrow pointing to the generalized superclass represents a generalization
 - Arrows pointing to the specialized subclasses represent a specialization
 - *We do not use* this notation because it is often subjective as to which process is more appropriate for a particular situation
 - *We advocate not drawing* any arrows
Generalization and Specialization (2)

- Data Modeling with Specialization and Generalization
 - A superclass or subclass represents a collection (or set or grouping) of entities
 - It also represents a particular *type of entity*
 - Shown in rectangles in EER diagrams (as are entity types)
 - We can call all entity types (and their corresponding collections) *classes*, whether they are entity types, superclasses, or subclasses
Constraints on Specialization and Generalization (1)

- If we can determine exactly those entities that will become members of each subclass by a condition, the subclasses are called predicate-defined (or condition-defined) subclasses
 - Condition is a constraint that determines subclass members
 - Display a predicate-defined subclass by writing the predicate condition next to the line attaching the subclass to its superclass
Constraints on Specialization and Generalization (2)

- If all subclasses in a specialization have membership condition on same attribute of the superclass, specialization is called an attribute-defined specialization
 - Attribute is called the defining attribute of the specialization
 - Example: JobType is the defining attribute of the specialization \{SECRETARY, TECHNICIAN, ENGINEER\} of EMPLOYEE

- If no condition determines membership, the subclass is called user-defined
 - Membership in a subclass is determined by the database users by applying an operation to add an entity to the subclass
 - Membership in the subclass is specified individually for each entity in the superclass by the user
Displaying an attribute-defined specialization in EER diagrams

Figure 4.4
EER diagram notation for an attribute-defined specialization on Job_type.
Constraints on Specialization and Generalization (3)

- Two basic constraints can apply to a specialization/generalization:
 - Disjointness Constraint:
 - Completeness Constraint:
Constraints on Specialization and Generalization (4)

- **Disjointness Constraint:**
 - Specifies that the subclasses of the specialization must be *disjoint*:
 - an entity can be a member of at most one of the subclasses of the specialization
 - Specified by d in EER diagram
 - If not disjoint, specialization is *overlapping*:
 - that is the same entity may be a member of more than one subclass of the specialization
 - Specified by o in EER diagram
Constraints on Specialization and Generalization (5)

- **Completeness Constraint:**
 - *Total* specifies that every entity in the superclass must be a member of some subclass in the specialization/generalization.
 - Shown in EER diagrams by a **double line**.
 - *Partial* allows an entity not to belong to any of the subclasses.
 - Shown in EER diagrams by a single line.
Constrains on Specialization and Generalization (6)

- Hence, we have four types of specialization/generalization:
 - Disjoint, total
 - Disjoint, partial
 - Overlapping, total
 - Overlapping, partial

- Note: Generalization usually is total because the superclass is derived from the subclasses.
Example of disjoint partial Specialization

Figure 4.4
EER diagram notation for an attribute-defined specialization on Job_type.
Example of overlapping total Specialization

Figure 4.5
EER diagram notation for an overlapping (nondisjoint) specialization.
A subclass may itself have further subclasses specified on it
- forms a hierarchy or a lattice

Hierarchy has a constraint that every subclass has only one superclass (called *single inheritance*); this is basically a *tree structure*

In a *lattice*, a subclass can be subclass of more than one superclass (called *multiple inheritance*)
Shared Subclass “Engineering_Manager”

A specialization lattice with shared subclass ENGINEERING_MANAGER.
In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of all its predecessor superclasses.

A subclass with more than one superclass is called a shared subclass (multiple inheritance).

Can have:
- specialization hierarchies or lattices, or
- generalization hierarchies or lattices,
- depending on how they were derived.

We just use specialization (to stand for the end result of either specialization or generalization).
Specialization/Generalization Hierarchies, Lattices & Shared Subclasses (3)

- In *specialization*, start with an entity type and then define subclasses of the entity type by successive specialization
 - called a *top down* conceptual refinement process
- In *generalization*, start with many entity types and generalize those that have common properties
 - Called a *bottom up* conceptual synthesis process
- In practice, a *combination of both processes* is usually employed
Specialization / Generalization Lattice Example (UNIVERSITY)

Figure 4.7
A specialization lattice with multiple inheritance for a UNIVERSITY database.
Categories (UNION TYPES) (1)

- All of the *superclass/subclass relationships* we have seen thus far have a single superclass.
- A shared subclass is a subclass in:
 - *more than one* distinct superclass/subclass relationships
 - each relationships has a single superclass
 - shared subclass leads to multiple inheritance
- In some cases, we need to model a *single superclass/subclass relationship* with *more than one* superclass
- Superclasses can represent different entity types
- Such a subclass is called a category or UNION TYPE
Categories (UNION TYPES) (2)

- Example: In a database for vehicle registration, a vehicle owner can be a PERSON, a BANK (holding a lien on a vehicle) or a COMPANY.
 - A category (UNION type) called OWNER is created to represent a subset of the union of the three superclasses COMPANY, BANK, and PERSON.
 - A category member must exist in at least one of its superclasses.

- Difference from shared subclass, which is a:
 - subset of the intersection of its superclasses.
 - shared subclass member must exist in all of its superclasses.
Two categories (UNION types): OWNER, REGISTERED_VEHICLE

Figure 4.8
Two categories (union types): OWNER and REGISTERED_VEHICLE.
Formal Definitions of EER Model (1)

- **Class C:**
 - A type of entity with a corresponding set of entities:
 - could be entity type, subclass, superclass, or category

- **Note:** The definition of *relationship type* in ER/EER should have 'entity type' replaced with 'class' to allow relationships among classes in general

- **Subclass S is a class whose:**
 - Type inherits all the attributes and relationship of a class C
 - Set of entities must always be a subset of the set of entities of the other class C
 - \(S \subseteq C \)
 - C is called the superclass of S
 - A superclass/subclass relationship exists between S and C
Formal Definitions of EER Model (2)

- Specialization Z: $Z = \{S_1, S_2, \ldots, S_n\}$ is a set of subclasses with same superclass G; hence, G/S_i is a superclass relationship for $i = 1, \ldots, n$.
 - G is called a generalization of the subclasses $\{S_1, S_2, \ldots, S_n\}$
 - Z is total if we always have:
 - $S_1 \cup S_2 \cup \ldots \cup S_n = G$;
 - Otherwise, Z is partial.
 - Z is disjoint if we always have:
 - $S_i \cap S_2$ empty-set for $i \neq j$;
 - Otherwise, Z is overlapping.
Formal Definitions of EER Model (3)

- Subclass S of C is predicate defined if predicate (condition) p on attributes of C is used to specify membership in S;
 - that is, \(S = C[p] \), where \(C[p] \) is the set of entities in C that satisfy condition p
- A subclass not defined by a predicate is called user-defined
- Attribute-defined specialization: if a predicate \(A = c_i \) (where A is an attribute of G and \(c_i \) is a constant value from the domain of A) is used to specify membership in each subclass \(S_i \) in Z
 - Note: If \(c_i \neq c_j \) for \(i \neq j \), and A is single-valued, then the attribute-defined specialization will be disjoint.
Formal Definitions of EER Model (4)

- **Category or UNION type T**
 - A class that is a subset of the union of n defining superclasses D1, D2,…Dn, n>1:
 - \(T \subseteq (D1 \cup D2 \cup \ldots \cup D_n) \)
 - Can have a predicate \(p_i \) on the attributes of \(D_i \) to specify entities of \(D_i \) that are members of \(T \).
 - If a predicate is specified on every \(D_i \): \(T = (D1[p1] \cup D2[p2] \cup \ldots \cup D_n[pn]) \)
Alternative diagrammatic notations

- ER/EER diagrams are a specific notation for displaying the concepts of the model diagrammatically
- DB design tools use many alternative notations for the same or similar concepts
- One popular alternative notation uses *UML class diagrams*
- see next slides for UML class diagrams and other alternative notations
UML Example for Displaying Specialization / Generalization

Figure 4.10
A UML class diagram corresponding to the EER diagram in Figure 4.7, illustrating UML notation for specialization/generalization.
Alternative Diagrammatic Notations

(a) Entity type/class symbols
 (i) E
 (ii) E

Attribute symbols
 (i) A
 (ii) A
 (iii) A

Relationship symbols
 (i) R
 (ii) R
 (iii) R

(b) Displaying entity type/class, attribute, and relationship:
 (i) Name
 (ii) Ssn
 (iii) Address
 (iv) EMPLOYEE

(c) Displaying attributes:
 (i) 1
 (ii) N
 (iii) (0,n)
 (iv) (1,1)
 (v) 1..1

(d) Displaying cardinality ratios:
 (i) C
 (ii) G
 (iii) G

(e) Notations for displaying specialization/generalization:

Figure A.1
Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displaying attributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations for displaying specialization/generalization.
General Conceptual Modeling Concepts

- GENERAL DATA ABSTRACTIONS
 - CLASSIFICATION and INSTANTIATION
 - AGGREGATION and ASSOCIATION (relationships)
 - GENERALIZATION and SPECIALIZATION
 - IDENTIFICATION

- CONSTRAINTS
 - CARDINALITY (Min and Max)
 - COVERAGE (Total vs. Partial, and Exclusive (disjoint) vs. Overlapping)
Ontologies

- Use conceptual modeling and other tools to develop “a specification of a conceptualization”
 - **Specification** refers to the language and vocabulary (data model concepts) used
 - **Conceptualization** refers to the description (schema) of the concepts of a particular field of knowledge and the relationships among these concepts
- Many medical, scientific, and engineering ontologies are being developed as a means of standardizing concepts and terminology
Summary

- Introduced the EER model concepts
 - Class/subclass relationships
 - Specialization and generalization
 - Inheritance
- These augment the basic ER model concepts introduced in Chapter 3
- EER diagrams and alternative notations were presented