4.0 Construction

Manufacture, Delivery, Placement, and Compaction

Outline

- Construction Overview
- Surface Preparation
- Manufacture
- Mix Delivery (Hauling)
- Placement
- Compaction
- Specifications/SSPs

Construction Overview

FOCUS: RAC surface courses
- RAC-G, RAC-O, and RAC-O-HB
- RAC placement very similar to typical dense-graded AC overlays, except:
 - Typically requires higher placement and compaction temperatures
 - For RAC-G, use vibratory mode for breakdown passes and get 95% of required compaction during breakdown
 - Not amenable to handwork
- Good practices are required for RAC production and construction, as for DGAC.
Surface Preparation
GOAL: Provide surface conditions that promote performance of the new RAC surface.

Same activities as for DGAC:
- Address existing distress
 - Seal cracks
 - Remove and replace failed pavement
- Improve smoothness
 - Fill ruts, level, restore or adjust profile
- Assure bond with underlying layers

Surface Leveling
- Purpose – Restore (or improve) surface profile, fill ruts, and/or maintain curb reveal
- Techniques
 - Cold milling, cold planing, grinding
 - Leveling course (DGAC)
 - Rut filler

Clean and Sweep
- Remove debris from repairs, milling or grinding prior to placing overlay, to promote good bond.
- Wash if necessary
 - Make sure surface is dry before overlaying
- Sweep/broom thoroughly to remove possible bond breakers
Apply Tack

Purpose is to bond pavement layers together. Paving grade asphalt preferred for RAC.

Manufacture

- Primary difference from normal AC plant operations is on-site manufacture of high viscosity asphalt rubber binder.
 - Have already discussed binder components and design
 - Construction
 - Inspection details in next segment
 - Steps and equipment follow

AR Binder Production Process

Blending Schematic

- Asphalt Storage Tank
- Ground Rubber
- Heat Tank
- Blender
- Reaction Vessel
CRM comes in nominal 2,000 lb "Supersacks"

CRM is weighed in hopper

CRM is blended with hot asphalt cement
RAC Mix Production

- Asphalt rubber binder feed is substituted for normal asphalt cement feed, interlocked and metered into the AC plant
- Little impact on AC plant operations
 - More than one AR binder plant can be used to maintain RAC production at normal tph rate
 - Primary differences from DGAC are in mixing and discharge temperatures
 - Aggregate mixing temperature range 300 - 325°F
 - AR binder added at ≈ 375°F
Mix Delivery (Hauling)

- RAC mix temperature is critical for placement and compaction
 - Trucks hauling RAC mixes must be tarped
 - Spread temperature 280-325°F per Caltrans
 - Minimum temperature for start of breakdown rolling is 275°F per Caltrans
 - Generous compared to other specifications: Green Book requires higher temperatures

Mix Delivery

As for DGAC, to promote quality, smoothness, and uniform compaction, must balance all aspects:
- Mix production (AC plant)
- Mix delivery (trucking)
- Paving operations (non stop)
- Compaction (keep up with the paver)
Mix Segregation

- Aggregate (particle size) segregation
 - RAC-G may look segregated due to low fines content – mix texture may look coarse and somewhat open.
 - Sample, test binder content and gradation to verify
 - Segregation causes non-uniform gradation and compaction, may yield interconnected air voids
 - Sources include mix loading/unloading and paver operation

Mix Segregation

- Techniques to reduce aggregate (particle size) segregation
 - Better mix gradations – not much help for RAC-G or RAC-O
 - Improved loading and unloading practices
 - Use material transfer vehicle – not always feasible

Thermal Segregation

- Often accompanies particle size segregation
- Results in non-uniform compaction
- Sources include:
 - Processes that result in uneven cooling (hauling, windrows)
 - Managing paver wings
 - Delays in mix delivery and/or placement
Thermal Segregation

- Techniques to reduce thermal segregation
 - Minimize time between loading and placement
 - Truck insulation and tarping
 - Proper paving procedures
 - Material transfer vehicle

Issues Related to Haul Trucks

- Types and characteristics
 - End dump
 - Belly (bottom) dump – do not use windrows when site temperatures are marginally cold
 - Horizontal discharge (live bottom)
- Insulation – tarps required
- Cleaning (truck bed) – NO SOLVENTS!
 - Soap for surfactant
- Truck maintenance

Truck Loading Practices

- Primary goal – Avoid segregation!

- What makes a mix prone to segregation?
 - Range of particle sizes, limited fines
Truck Loading Practices
Preferred practice for end dump trucks:

Short

Long

Truck Loading Practices
Preferred practice for belly dump trucks:

Placement (Laydown)
- Purpose – Place mix smoothly at a uniform specified thickness conforming to plan slopes and grades at temperatures above a specified minimum
- Equipment – same as for DGAC
 - Tractor unit (paver)
 - Screed unit
- Paver operation - same as for DGAC
- Joints – good practices essential
Paver Operation

Use good practices!

References:
- National Highway Institute (NHI) HMA Construction Course
- HMA Paving Handbook 2000
- Caltrans Construction Manual

Handwork

- Minimize as feasible
- Coarse gradation, stiff binder make handwork difficult
- High temperatures necessary to maintain RAC workability
- Typically yields coarse, open and rough looking appearance due to limited fines
- Minimize raking and luting
- Do not broadcast excess material

Joints

The same factors that make handwork difficult for RAC mixes also affect construction and finished appearance of joints.

- Use good practices
- Difficult to feather RAC mix due to limited fines
- Assume compaction reduces machine placement thickness by ≈ ¼-inch per inch
 - For hand placement, use 3/8-inch per inch difference
- Some raking unavoidable
 - Minimize as possible
 - Rake excess to hot side, not cold side
Compaction

Adequate compaction is required to achieve good pavement performance

- Improves resistance to rutting
- Reduces moisture/air penetration and related environmental damage
 - Oxidative ageing (embrittlement, raveling)
 - Moisture damage (stripping)
- Improves fatigue resistance
- Reduces low temperature cracking potential
- Improves durability

Key factors influencing compaction include:

- Lift thickness
- Air temperature
- Base temperature
- Spread temperature of RAC mix
- Wind velocity, humidity, & other site factors
- Sunlight or lack thereof
- Mix properties including binder content

Temperature is the key to achieving RAC compaction!
Compaction Temperature (RAC)

- When air temperature is ≥55°F,
 - Minimum temperature for starting breakdown rolling is 280°F
 - Breakdown must be completed before mat temperature drops below 260°F
- When air temperature is ≥ 65°,
 - Minimum temperature for starting breakdown rolling of RAC-G is 275°F.
 - Breakdown must be completed before mat temperature drops below 250°F

Compaction Temperature

Caltrans temperature requirements for RAC mixes are more generous than those of other agencies.

- Specify the same temperatures for RAC-O and RAC-O-HB mixes as for RAC-G
- Working at the minimum temperatures may cause problems with achieving adequate compaction of RAC-G mixes

Compaction Temperature

- Suggest applying the higher temperature range for open-graded RAC
 - Based on experience of others, may still be marginally low to provide desired performance
 - Primary problems with low temperature placement of open-graded mixes are raveling and delamination
Compaction Requirements

- Caltrans will implement compaction requirements for RAC-G mixes in the future
 - Acceptance based on pavement cores
 - Proposed lower limit is 91% of maximum theoretical density (equivalent to maximum 9% in-place air voids)
 - Final requirements adopted may vary from current proposal
- No compaction requirements for open-graded RAC mixes, present or future

Compaction Equipment

- **Roller types**
 - Static steel wheel rollers
 - Pneumatic-tired rollers – do not use with RAC
 - Vibratory steel wheel rollers – required for breakdown
- **Rolling sequence**
 - Breakdown – immediately behind paver in vibratory mode
 - Intermediate
 - Finish
Roller Pattern

- Selection of compaction equipment
- Width of paving
- Width of roller(s) – for RAC need enough breakdown rollers to cover placement width
- Number of coverages needed
- Nuclear gauges for relative density
- Cores for correlation of gauges with in-place density, i.e. air voids content

Specifications/SSPs

- Specifications for RAC-G, RAC-O, and RAC-O-HB are in process of being updated and revised.
 - Will be included in pending Section 39 revisions.
- Implementation date not set
 - May phase in by piloting on selected projects
 - Might implement for projects bidding after specific date
- Follow requirements in project special provisions to assure use of appropriate version

Summary of Module 4

- Construction Overview
- Surface Preparation
- Manufacture
- Mix Delivery (Hauling)
- Placement
- Compaction
- Specifications/SSPs
Questions?