This Lecture

- PG Grading System
- Specifications

Sources of Information

- American Association of State Highway Transportation Officials (AASHTO)
- Federal Highway Administration (FHWA)
- Departments of Transportations (DOT) for individual States
- National Asphalt Pavement Association (NAPA)
- National Center for Asphalt Technology (NCAT)
- The Asphalt Institute (TAI)
Superpave Asphalt Binder Specification

The grading system is based on Climate

PG 64 - 22

Performance Grade

Min pavement temperature

Average 7-day max pavement temperature

Performance Grades

How the PG Spec Works
Permanent Deformation

- Addressed by high temp stiffness
 - G*/sin δ on unaged asphalt binder ≥ 1.00 kPa
 - G*/sin δ on RTFO aged asphalt binder ≥ 2.20 kPa

> Early part of pavement service life

Fatigue Cracking
Fatigue Cracking

- Addressed by intermediate temperature stiffness
- $G^*\sin\delta$ on RTFO & PAV aged asphalt binder < 5000 kPa

> Later part of pavement service life

Low Temperature Cracking

<table>
<thead>
<tr>
<th>Avg 7-day Max, °C</th>
<th>235</th>
<th>203</th>
<th>186</th>
<th>170</th>
<th>155</th>
<th>129</th>
<th>103</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg 7-day Min, °C</td>
<td>100</td>
<td>129</td>
<td>155</td>
<td>170</td>
<td>186</td>
<td>203</td>
<td>235</td>
<td>250</td>
</tr>
</tbody>
</table>

ROLLING THIN FILM OVEN (RTFO)
- Mass Loss $< 1.00\%$
-

PRESSURE AGING VESSEL (PAV)
- Original
- Aged
-

PAV Aged

Dynamic Shear Rheometer (DSR)
- $G^*\sin\delta$

Bending Beam Rheometer (BBR)
- "S" Stiffness & "m"-value

Low Temperature Cracking

<table>
<thead>
<tr>
<th>Avg 7-day Max, °C</th>
<th>235</th>
<th>203</th>
<th>186</th>
<th>170</th>
<th>155</th>
<th>129</th>
<th>103</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg 7-day Min, °C</td>
<td>100</td>
<td>129</td>
<td>155</td>
<td>170</td>
<td>186</td>
<td>203</td>
<td>235</td>
<td>250</td>
</tr>
</tbody>
</table>

ROLLING THIN FILM OVEN (RTFO)
- Mass Loss $< 1.00\%$
-

PRESSURE AGING VESSEL (PAV)
- Original
- Aged
-

PAV Aged

Dynamic Shear Rheometer (DSR)
- $G^*\sin\delta$

Bending Beam Rheometer (BBR)
- "S" Stiffness & "m"-value

Low Temperature Cracking

<table>
<thead>
<tr>
<th>Avg 7-day Max, °C</th>
<th>235</th>
<th>203</th>
<th>186</th>
<th>170</th>
<th>155</th>
<th>129</th>
<th>103</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg 7-day Min, °C</td>
<td>100</td>
<td>129</td>
<td>155</td>
<td>170</td>
<td>186</td>
<td>203</td>
<td>235</td>
<td>250</td>
</tr>
</tbody>
</table>

ROLLING THIN FILM OVEN (RTFO)
- Mass Loss $< 1.00\%$
-

PRESSURE AGING VESSEL (PAV)
- Original
- Aged
-

PAV Aged

Dynamic Shear Rheometer (DSR)
- $G^*\sin\delta$

Bending Beam Rheometer (BBR)
- "S" Stiffness & "m"-value

Low Temperature Cracking

<table>
<thead>
<tr>
<th>Avg 7-day Max, °C</th>
<th>235</th>
<th>203</th>
<th>186</th>
<th>170</th>
<th>155</th>
<th>129</th>
<th>103</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg 7-day Min, °C</td>
<td>100</td>
<td>129</td>
<td>155</td>
<td>170</td>
<td>186</td>
<td>203</td>
<td>235</td>
<td>250</td>
</tr>
</tbody>
</table>

ROLLING THIN FILM OVEN (RTFO)
- Mass Loss $< 1.00\%$
-

PRESSURE AGING VESSEL (PAV)
- Original
- Aged
-

PAV Aged

Dynamic Shear Rheometer (DSR)
- $G^*\sin\delta$

Bending Beam Rheometer (BBR)
- "S" Stiffness & "m"-value
Miscellaneous Spec Requirements

<table>
<thead>
<tr>
<th>Flash Point</th>
<th>Mass Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>(110)</td>
</tr>
<tr>
<td>100</td>
<td>(110)</td>
</tr>
<tr>
<td>110</td>
<td>(110)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flash Point</th>
<th>Mass Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>52</td>
</tr>
<tr>
<td>58</td>
<td>64</td>
</tr>
<tr>
<td>70</td>
<td>76</td>
</tr>
<tr>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>

PG Binder Selection

- Many agencies have established zones

- PG 52-28
- PG 58-22
- PG 58-16
- PG 64-10

Developed from Air Temperatures

- Superpave Weather Database
- 6500 stations in U.S. and Canada
- Annual air temperatures
 - hottest seven-day temp (avg and std dev)
 - coldest temp (avg and std dev)
- Calculated HMA pavement temps used in PG selection

- > 20 years
Reliability

- Percent Probability of Not Exceeding Design Temp > using Normal Distribution

- Reliability is area under curve to the left of T_{des}

Observed Air Temperatures

- 50% reliability
- average summer
- very hot summer

- 98% reliability

7-Day Maximum Air Temperatures

Observed Air Temperatures

- very cold winter
- average winter

- standard deviation of 4°C
Convert to Pavement Temperature

- Calculated by Superpave software
- High Temperature
 - 20 mm below surface of mixture
- Low Temperature
 - at surface of mixture

$Pavt = f(\text{Air Temp, Depth, Latitude})$

Calculated Pavement Temperatures

$Pavt > \text{Air}$

PG Asphalt Binder Grades

PG asphalt binder grades - six degree increments
Effect of Rounding to Standard Grades

PG 58 provides 85% reliability
PG -28 provides 90% reliability

Effect of Rounding to Standard Grades

Minimum Pavement Temperatures

Effect of Loading Rate on Selection

- Dilemma
 - specified DSR loading rate is 10 rad/sec
 - what about longer loading times?
- Use asphalt binder with more stiffness at higher temperatures
 - slow - increase one high temperature grade
 - stationary - increase two high temperature grades
 - no effect on low temperature grade

90 kph
Effect of Loading Rate on Selection

- Example
 - for toll road: PG 64-22
 - for toll booth: PG 70-22
 - for weigh stations: PG 76-22

90 kph

90 kph

Example

Effect of Traffic Amount on Selection

- 10 - 30 x 10^6 ESAL
 - Consider increasing - - one high temp grade
- 30 x 10^6+ ESAL
 - Recommend increasing - - one high temp grade

ESAL Comparison

- 80 kN
 - 18,000 lb.
- 100 kN
 - 22,000 lb.
- 44 kN
 - 10,000 lb.

1 ESAL
2.2 ESAL
0.9 ESAL

> Equivalent Single Axle Loads
How the PG Spec Works

Spec Requirement Remains Constant

Test Temperature Changes

Summary of How to Use PG Asphalt Binder Specification

- Determine
 - 7-day max pavement temperatures
 - 1-day minimum pavement temperature
- Use specification tables to select test temperatures
- Determine asphalt cement properties and compare to specification limits