HDRI Lighting

By: Richard Fleming
Typical Lighting

- Point Lights
- Area Lights
- Distant Lights
- Linear Lights
- Spot Lights

- HDRI Lighting can simulate all these types of lights
When to Use HDRI Lighting?

- **Outside scenes**
 - Ocean light (sun over the ocean)
 - Moonlight
 - Sunrise
 - Afternoon
 - Generally any outside scene is good—so long as it has the elements needed for the LW scene

- **Almost any picture can be used in HDRI Lighting (a Lightprobe)**

- **Again, be sure that the image has lighting that will fit the scene.**

- **Can also be used on windows in a house**

- **Backdrop for an image and another image for the lighting**
Color Range

- **LDRI**
 - 8 bits = $2^8 = 256$ colors that can be represented

- **HDRI**
 - Exceeds the 8 bit limit
 - Values such as 942.32, 500, 257.333, are legal values.
 - Areas in which appear dark may contain valuable information
Creating the HDRI

- Images such as the one to the side are referred to lightprobes in Lightwave.
- Use a
 - Chrome ball set on a pole
 - Fish lens on a camera
 - Buy professionally edited photographs specifically taken for HDRI
- Edit the photos in Photoshop
 - Layer and stitch together
 - Layers create a higher dynamic range. This is of great importance when using the image as a lightprobe
Background Option

- Load your scene
- Effects tab > Background
 - Ctrl + F5 (v8.0)
Effects Tab

- Click on “add environment” dropdown
Select “Image World”
The plug-in is now installed
Edit Properties

- Select the "Image World" text
- Click on Edit and select properties
Loading the Image

- Load the image in the Light Probe Image drop-down
If Image Not Present...

- If the image is not present....
 - Press F6 to load the Image Editor (LW v8.0)
 - Click on the Load tab
 - Find your image
 - Now it’s loaded.
Settings

- Here you can edit the properties such as:
 - Rotational values
 - Brightness
 - *They are self explanatory
More Settings!

- Before rendering, be sure to turn ON radiocity
 - Select a light
 - Select global properties
 - Click on the box so that a check mark appears for the radiocity box
- No other lights should be needed at this point
What Wasn’t Told (In Tutorials/Online)

- What you should know, or what wasn’t told.
 - Create a Sphere
 - Large enough to surround the scene
 - Settings
 - Luminosity
 - Diffuse
 - Spherical mapping
Create a Sphere

- Create a Sphere
 - Make it large enough to surround your scene
 - Save it and import it into Lightwave
 - Load the image to the sphere
 - Image editor—T tab
 - Select HDRI image imported
 - Select spherical mapping
 - Have inverted normals
 - Turn off Shadows and exclude ALL lights
 - Select the sphere
 - Press p for properties
 - Render and Lights tab
 - Turn off all shadows under render
 - Make sphere unaffected by lights under Lights tab
Properties on Lighting

- Select a light (any light)
- Press p to enter properties
 - Click on Global Illumination
 - Change ambient lighting to 0%
 - Change the type under radiocity to Interpolated (fast) or Monte Carlo (More accurate—Slow)
 - These tell how accurate the lighting will be.
 - Change indirect bounces to 1 or 2
 - Higher values will create greater render time!
 - This simulates the light on how it bounces off objects; how many times it bounces off of one surface and lands on another
Sample Render

- LDRI Render
- Picture on window used as the only light source
 - Brightness set @ 300%
 - Monte Carlo
 - Indirect bounces = 1
 - Low AA
Good and Bad about HDRI Lighting

- **Good**
 - Can produce faster renders
 - Glass makes renders surprising slower
 - Realistic lighting

- **Bad**
 - You cannot see the image until render time
 - Difficult to spot where the “sun” or main light source is coming from.
Sources

- http://www.dbki.de/tutorials/eng/hdr_lighting/index.htm
Thanks for your time and patience

HDRI Lighting
By: Richard Fleming