Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 7 of Data Mining by I. H. Witten and E. Frank

Just apply a learner? NO!

- Scheme/parameter selection
treat selection process as part of the learning process
- Modifying the input:
 - Data engineering to make learning possible or easier
- Modifying the output
 - Combining models to improve performance

1. Attribute selection

- Adding a random (i.e. irrelevant) attribute can significantly degrade C4.5's performance
 - Problem: attribute selection based on smaller and smaller amounts of data
- IBL very susceptible to irrelevant attributes
 - Number of training instances required increases exponentially with number of irrelevant attributes
- Naïve Bayes doesn’t have this problem
 - But, relevant attributes can also be harmful

Scheme-independent attribute selection

- Filter approach: assess based on general characteristics of the data
- One method: find smallest subset of attributes that separates data
- Another method: use different learning scheme
 - e.g. use attributes selected by C4.5 and 1R, or coefficients of linear model, possibly applied recursively (recursive feature elimination)
- IBL-based attribute weighting techniques:
 - can’t find redundant attributes (but fix has been suggested)
- Correlation-based Feature Selection (CFS):
 - correlation between attributes measured by symmetric uncertainty:
 \[U(A, B) = 2 \frac{H(A) + H(B) - H(A, B)}{H(A) + H(B)} \in [0, 1] \]
 - goodness of subset of attributes measured by (breaking ties in favor of smaller subsets):
 \[\sum_j \sqrt{\sum_i U(A_i, A_j)} \]

Attribute subsets for weather data
Searching attribute space

- Number of attribute subsets is exponential in number of attributes
- Common greedy approaches:
 - forward selection
 - backward elimination
- More sophisticated strategies:
 - Bidirectional search
 - Best-first search: can find optimum solution
 - Beam search: approximation to best-first search
 - Genetic algorithms

Scheme-specific selection

- Wrapper approach to attribute selection
- Implement “wrapper” around learning scheme
- Evaluation criterion: cross-validation performance
- Time consuming
 - greedy approach, \(k \) attributes \(\Rightarrow k^2 \times \) time
 - prior ranking of attributes \(\Rightarrow \) linear in \(k \)
- Can use significance test to stop cross-validation for subset early if it is unlikely to “win” (race search)
- can be used with forward, backward selection, prior ranking, or special-purpose schemas search
- Learning decision tables: scheme-specific attribute selection essential
- Efficient for decision tables and Naive Bayes

WEKA’s Visualize panel ...

In WEKA ...

- Attribute subset evaluators (see pp. 421-422)
 - Correlation-based feature selection (CFS)
 - `weka.attributeSelection.CfsSubsetEval`
- Classifier subset evaluator
 - `weka.attributeSelection.ClassifierSubsetEval`
- Consistency attribute subset evaluator
 - `weka.attributeSelection.ConsistencySubsetEval`
- Use a classifier plus cross-validation
 - `weka.attributeSelectionWRAPPERSubsetEval`

In WEKA ...

- Single attribute evaluators (see pp. 421-423)
 - Chi-squared statistic
 - `weka.attributeSelection.ChiSquaredAttributeEval`
 - Gain ratio
 - `weka.attributeSelection.GainRatioAttributeEval`
 - Information gain
 - `weka.attributeSelection.InfoGainAttributeEval`
 - 1R methodology
 - `weka.attributeSelection.OneRAttributeEval`
In WEKA ...

- Single attribute evaluators continued ...
 - Principal components analysis (PCA) and transformation
 - weka.attributeSelection.PrincipalComponents
 - Instance-based (Recursive Elimination of Features)
 - weka.attributeSelection.ReliefFAtributeEval
 - Linear support vector machine (SVM)
 - weka.attributeSelection.SVMAtributeEval
 - Symmetric uncertainty
 - weka.attributeSelection.SymmetricalUncertAttributeEval

In WEKA ...

- Search methods for attribute selection (see pp. 421-425)
 - Greedy hill-climbing with / without backtracking
 - weka.attributeSelection.BestFirst / GreedyStepwise
 - Search exhaustively
 - weka.attributeSelection.ExhaustiveSearch
 - Search using a simple genetic algorithm (GA)
 - weka.attributeSelection.GeneticSearch
 - Race search methodology
 - weka.attributeSelection.RaceSearch
 - Random
 - weka.attributeSelection.RandomSearch
 - Sort attributes and rank via attribute subset evaluator
 - weka.attributeSelection.RankSearch

In WEKA ... another way ...

- Determine intervals without knowing class labels
 - When clustering, the only possible way!
 - Two strategies:
 - Equal-interval binning
 - Equal-frequency binning
 (also called histogram equalization)
 - Normally inferior to supervised schemes in classification tasks
 - But equal-frequency binning works well with naïve Bayes if number of intervals is set to square root of size of dataset (proportional k-interval discretization)

2. Attribute discretization

- Avoids normality assumption in Naïve Bayes and clustering
 - 1R: uses simple discretization scheme
 - C4.5 performs local discretization
 - Global discretization can be advantageous because it is based on more data
 - Apply learner to
 - k-valued discretized attribute or to
 - k–1 binary attributes that code the cut points

Discretization: unsupervised
Discretization: supervised

- **Entropy-based** method
- Build a decision tree with pre-pruning on the attribute being discretized
- Use entropy as splitting criterion
- Use minimum description length principle as stopping criterion
- Works well: the state of the art
- To apply MDL principle:
 - The “theory” is
 - the splitting point \(\log_2(N-1) \) bits
 - plus class distribution in each subset
 - Compare description lengths before/after adding splitting point

Example: temperature attribute

- **Formula for MDLP stopping criterion**
 - \(N \) instances
 - Original set: \(k \) classes, entropy \(E \)
 - First subset: \(k_1 \) classes, entropy \(E_1 \)
 - Second subset: \(k_2 \) classes, entropy \(E_2 \)

\[
\text{gain} > \frac{\log_2(N-1)}{N} + \frac{\log_2(N^3-2) - kE + k_1E_1 + k_2E_2}{N}
\]

- Results in no discretization intervals for temperature attribute

Supervised discretization: other methods

- Can replace top-down (splitting) procedure by bottom-up (merging) method
- Can replace MDLP (entropy-based) stopping criterion by (statistical) chi-squared test
- Can use dynamic programming (versus exponential brute-force algorithm) to find optimum \(k \)-way split for given additive criterion
 - Requires time quadratic in the number of instances
 - But can be done in linear time if error rate is used instead of entropy

Error-based vs. entropy-based

- Question:
 Could the best discretization ever have two adjacent intervals with the same class?
- Wrong answer: No. If so,
 - Collapse the two
 - Free up an interval
 - Use it somewhere else
 - *(This is what error-based discretization will do)*
- Right answer: Surprisingly, yes.
 - *(And entropy-based discretization can do it)*
The converse of discretization

- Make nominal values into “numeric” ones
 1. Indicator attributes (used by IB1)
 - Makes no use of potential ordering information
 2. Code an ordered nominal attribute into binary ones (used by M5’)
 - Can be used for any ordered attribute
 - Better than coding ordering into an integer
 (which implies a metric)
 - In general: code subset of attributes as binary

In WEKA ...

- Unsupervised attribute filters (see pp. 395-396)
 - Convert numeric to nominal (allows equal-interval vs. equal-frequency binning, plus numerous other parameters)
 - weka.filters.unsupervised.attribute.Discretize
 - Replace nominal with Boolean (1 within range, else 0)
 - weka.filters.unsupervised.attribute.MakeIndicator
 - Change nominal to several binary attributes (1 per value)
 - weka.filters.unsupervised.attribute.NominalToBinary
 - Convert all numeric attributes into binary ones
 - weka.filters.unsupervised.attribute.NumericToBinary

More ...

3. Data transformations

- Simple transformations can often make a large difference in performance
- Example transformations (not necessarily for performance improvement):
 - Difference of two date attributes
 - Ratio of two numeric (ratio-scale) attributes
 - Concatenating the values of nominal attributes
 - Encoding (probabilistic) cluster membership
 - Adding noise to data (for robustness tests)
 - Removing data randomly or selectively
 - Obfuscating the data (for anonymity)
Data Transformations in WEKA...

In WEKA...

- Some unsupervised attribute filters (see pp. 395-401)
 - Insert attribute at given position
 - `weka.filters.unsupervised.attribute.Add`
 - Copies attributes to preserve them when filters overwrite attribute values
 - `weka.filters.unsupervised.attribute.Copy`
 - Delete all attributes of a given type (nominal, numeric, ...)
 - `weka.filters.unsupervised.attribute.RemoveType`
 - Apply clustering algorithm to data before filtering
 - `weka.filters.unsupervised.attribute.AddCluster`

More...

In WEKA...

- More unsupervised attribute filters (see pp. 395-401)
 - Create new attribute by applying a mathematical function to numeric attributes
 - `weka.filters.unsupervised.attribute.AddExpression`
 - Create new attribute by applying a given Java function to numeric attributes
 - `weka.filters.unsupervised.attribute.AddJavaExpression`
 - Scale numeric values to range [0,1]
 - `weka.filters.unsupervised.attribute.Normalize`
 - Transform numeric values to have zero mean and unit variance
 - `weka.filters.unsupervised.attribute.Standardize`

Principal component analysis

- Method for identifying the important “directions” in the data
- Can rotate data into (reduced) coordinate system that is given by those directions
- Algorithm:
 1. Find direction (axis) of greatest variance
 2. Find direction of greatest variance that is perpendicular to previous direction and repeat
- Implementation: Find eigenvectors of covariance matrix by diagonalization
- Eigenvectors (sorted by eigenvalues) are the directions

Example: 10-dimensional data

<table>
<thead>
<tr>
<th>Axis</th>
<th>Variance</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.2%</td>
<td>61.2%</td>
</tr>
<tr>
<td>2</td>
<td>18.0%</td>
<td>79.2%</td>
</tr>
<tr>
<td>3</td>
<td>4.7%</td>
<td>83.9%</td>
</tr>
<tr>
<td>4</td>
<td>4.0%</td>
<td>87.9%</td>
</tr>
<tr>
<td>5</td>
<td>3.2%</td>
<td>91.1%</td>
</tr>
<tr>
<td>6</td>
<td>2.9%</td>
<td>94.0%</td>
</tr>
<tr>
<td>7</td>
<td>2.0%</td>
<td>96.0%</td>
</tr>
<tr>
<td>8</td>
<td>1.7%</td>
<td>97.7%</td>
</tr>
<tr>
<td>9</td>
<td>1.4%</td>
<td>99.1%</td>
</tr>
<tr>
<td>10</td>
<td>0.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Note: Component = axis, since each axis accounts for its share of the variance

- Can transform data into space given by principal components
- Common to standardize attributes prior to applying PCA
- Could also apply this recursively in decision tree learner

In WEKA...

- PCA unsupervised attribute filter (see pp. 395-401)
 - Perform principal components analysis and transformation of the data (default 95% variance in original data)
 - `weka.filters.unsupervised.attribute.PCComponent`
 - code based on WEKA’s PCA attribute selection scheme
Random projections

- PCA is nice but expensive: cubic in number of attributes
- Alternative: use random directions (projections) instead of principle components
- Surprising: random projections preserve distance relationships quite well (on average)
 - Can use them to apply kD-trees to high-dimensional data
 - Can improve stability by using ensemble of models based on different projections
 - Much cheaper than PCA!

In WEKA ...

- Randomizing attribute filters (see pp. 396 & 400)
 - Change a given percentage of values of a nominal attribute
 - weka.filters.unsupervised.attribute.AddNoise
 - Rename relation, attributes, and nominal and string attribute values
 - weka.filters.unsupervised.attribute.Obfuscate
 - Use random matrix to project dataset to a lower-dimensional subspace
 - weka.filters.unsupervised.attribute.RandomProjection

Text to attribute vectors

- Many data mining applications involve textual data (e.g., string attributes in ARFF)
- Standard transformation: convert string into bag of words by tokenization
 - Attribute values are binary, term frequencies (f_j), $\log(1+f_j)$, or TF × IDF: $f_j \log \frac{\# \text{documents}}{\text{documents that include word } j}$
 - Only retain alphabetic sequences?
 - What should be used as delimiters?
 - Should words be converted to lowercase?
 - Should stopwords (e.g., the, and, but) be ignored?
 - Should hapax legomena be included? Or even just the k most frequent words?

In WEKA ...

- String conversion attribute filters (see pp. 396 & 399)
 - Convert to set number of nominal values
 - weka.filters.unsupervised.attribute.StringToNominal
 - Produce attributes representing word frequency in a string
 - weka.filters.unsupervised.attribute.StringToWordVector

Time series

- In time series data, each instance represents a different time step (e.g., weather or stock market prediction)
- Some simple transformations:
 - Shift values from the past/future
 - Compute difference (delta) between instances (i.e. “derivative”)
- In some datasets, samples are not regular but time is given by timestamp attribute
 - Need to normalize by step size when transforming
- Transformations need to be adapted if attributes represent different time steps

In WEKA ...

- Time series attribute filters (see pp. 396 & 399-400)
 - Replace attribute values in current instance with equivalent value in some other (previous or future) instance
 - weka.filters.unsupervised.attribute.TimeSeriesTranslate
 - Replace attribute values in current instance with distance between current value and the value in some other instance
 - weka.filters.unsupervised.attribute.TimeSeriesDelta
4. Automatic data cleansing

- What for? Poor quality of available data ...
- To improve a decision tree:
 - Remove misclassified instances, then re-learn!
- Better (of course!):
 - Human expert checks misclassified instances
- Attribute noise vs. class noise
 - Attribute noise should be left in training set
 (don't train on clean set and test on dirty one)
 - Systematic class noise (e.g. one class substituted for
 another): leave in training set
 - Unsystematic class noise: eliminate from training set, if
 possible

Data cleansing in WEKA ...

- Unsupervised instance filters (see pp. 400-401)
 - Remove instances incorrectly classified according to a
 specified classifier – useful for removing outliers
 - weka.filters.unsupervised.instance.RemoveMisclassified
 - Remove a given percentage of a dataset
 - weka.filters.unsupervised.instance.RemovePercentage
 - Remove a given range of instances
 - weka.filters.unsupervised.instance.RemoveRange
 - Filter out instances with certain attribute values
 - weka.filters.unsupervised.instance.RemoveWithValues
 - Produce random subsample of a dataset, sampling with
 replacement
 - weka.filters.unsupervised.instance.Resample

Robust regression

- “Robust” statistical method ⇒ one that addresses problem of outliers
- To make regression more robust:
 - Minimize absolute error, not squared error
 - Remove outliers (e.g. 10% of points farthest from
 the regression plane)
 - Minimize median instead of mean of squares
 (copes with outliers in x and y direction)
 - Finds narrowest strip covering half the observations

Example: least median of squares

- Visualization can help to detect anomalies
 - “Automatic” approach: committee of different
 learning schemes to filter the data
 - E.g. Committee consisting of a
 - decision tree
 - nearest-neighbor learner
 - linear discriminant function
 - Conservative approach: delete instances
 incorrectly classified by them all
 - Problem: might sacrifice instances of small classes
 - Better: Human inspection of instances identified
 by the filter as suspect.

5. Combining multiple models

- Basic idea:
 build different “experts”, let them vote
- Advantage:
 - often improves predictive performance
- Disadvantage:
 - usually produces output that is very hard to
 analyze
 - but: there are approaches that aim to produce
 a single comprehensible structure
Bagging

- Combining predictions by voting/averaging
 - Simplest way
 - Each model receives equal weight
- “Idealized” version of bootstrap aggregating:
 - Bootstrap: Sample (with replacement) several training sets of size n (instead of just having one training set of size n)
 - Build a classifier for each training set
 - Aggregation: Combine the classifiers’ predictions
- Learning scheme is unstable \Rightarrow almost always improves performance
- Small change in training data can make big change in model (e.g. decision trees)

Bias-variance decomposition

- Used to analyze how much selection of any specific training set affects performance
- Assume infinitely many classifiers, built from different training sets of size n
- For any learning scheme,
 - $Bias = \text{expected error of the combined classifier on new data}$
 - $Variance = \text{expected error due to the particular training set used}$
- Total expected error $= bias + variance$

More on bagging

- Bagging works because it reduces variance by voting/averaging
 - Note: in some pathological hypothetical situations the overall error might increase
 - Usually, the more classifiers the better
 - Problem: we only have one dataset!
 - Solution: generate new ones of size n by sampling from it with replacement
 - Can help a lot if data is noisy
 - Can also be applied to numeric prediction
 - Aside: bias-variance decomposition originally only known for numeric prediction

Bagging classifiers

Model generation

Let n be the number of instances in the training data
For each of t iterations:
 - Sample n instances from training set (with replacement)
 - Apply learning algorithm to the sample
 - Store resulting model

Classification

For each of the t models:
 - Predict class of instance using model
 - Return class that is predicted most often

Bagging with costs

- Bagging unpruned decision trees known to produce good probability estimates
 - Where, instead of voting, the individual classifiers’ probability estimates are averaged
 - Note: this can also improve the success rate
 - Can use this with minimum-expected cost approach for learning problems with costs
 - Problem: not interpretable
 - MetaCost re-labels training data using bagging with costs and then builds single tree

Bagging in WEKA...
Bagging in WEKA...

- Metalearning algorithms for Bagging (see pp. 414-415)
 - Bag a classifier; works for regression, too
 - \texttt{weka.classifiers.meta.Bagging}
 - Make base classifier cost-sensitive
 - \texttt{weka.classifiers.meta.CostSensitiveClassifier}
 - Make a classifier cost-sensitive via Domingos (1999)
 - \texttt{weka.classifiers.meta.MetaCost}

Randomization I

- Can randomize learning algorithm instead of input
- Some algorithms already have a random component: e.g. initial weights in neural net/MLP
- Most algorithms can be randomized, e.g. greedy algorithms:
 - Pick from the N best options at random instead of always picking the best options
 - \textit{E.g.}: attribute selection in decision trees

Randomization II

- Randomization can be combined with bagging
 - \textit{E.g.} learning random forests by building a randomized decision tree in each iteration of the bagging algorithm
- Unlike bagging, randomization can be applied to stable learners
 - randomize to make classifiers diverse
 - \textit{E.g.} Nearest-neighbor classifiers can be randomized by using different, randomly chosen subsets of attributes

Randomization in WEKA...

- Metalearning algs for randomization (see pp. 414-415)
 - Build an ensemble of randomizable base classifiers
 - \texttt{weka.classifiers.meta.RandomCommittee}

Boosting

- Also uses voting (classification) or averaging (numeric prediction)
- But: weights models according to performance
- Also: Iterative - new models are influenced by performance of previously built ones
 - Encourage new model to become an “expert” for instances misclassified by earlier models
 - Intuitive justification: models should be experts that complement each other
AdaBoost.M1 (for classification)

Model generation
Assign equal weight to each training instance
For t iterations:
 Apply learning algorithm to weighted dataset, store resulting model
 Compute model's error e on weighted dataset
 If $t < T^*$, error $e > 0.5$:
 Terminate model generation
 For each instance in dataset:
 If classified correctly by model:
 Multiply instance's weight by $\frac{1}{1-e}$
 Normalize weight of all instances

Classification
Assign weight $= 0$ to all classes
For each of the t models (or fewer):
 For the class this model predicts
 $\text{add} -\log \frac{e}{1-e}$ to this class's weight
Return class with highest weight

More on boosting I
- Boosting needs weights ... but
 - can adapt learning algorithm ... or
 - can apply boosting without weights
 - resample with probability determined by weights
 - disadvantage: not all instances are used
 - advantage: if error > 0.5, can resample again
- Idea of boosting stems from computational learning theory
 - Theoretical result:
 - training error decreases exponentially
 - Also:
 - works if base classifiers are not too complex, and
 - their error does not become too large too quickly

Boosting in WEKA ...

More on boosting II
- Continue boosting after training error = 0?
- Puzzling fact:
 generalization error continues to decrease!
 - Seems to contradict Occam's Razor
- Explanation:
 consider margin (confidence), not error
 - Difference between estimated probability for true class and nearest other class (between -1 and 1)
- Boosting works with weak (simple) learners only condition: error does not exceed 0.5
- In practice, boosting sometimes overfits (in contrast to bagging) = less accurate than single classifier

Boosting in WEKA ...

Additive regression I
- Turns out that boosting is a greedy algorithm for fitting additive models
- More specifically, boosting implements forward stagewise additive modeling
- Same kind of algorithm for numeric prediction:
 1. Build standard regression model (e.g. regression tree)
 2. Gather residuals, learn model predicting residuals (e.g. regression tree), and repeat
- To predict, simply sum up individual predictions from all models

Metalearning algs for boosting (see pp. 415-416)
- Boost using the AdaBoost.M1 method
 - `weka.classifiers.meta.AdaBoostM1`
- Combine boosting with a variant of bagging to prevent overfitting
 - `weka.classifiers.meta.MultiBoostAB`
- Build ensembles of diverse classifiers by using specially constructed artificial training examples
 - `weka.classifiers.meta.Decorate`
Additive regression II

- Minimizes squared error of ensemble if base learner minimizes squared error of predictions
 - Note: Does not make sense to use standard linear regression as a base learner
 - Can use it with simple (single attribute) linear regression to build multiple linear regression model
- Stopping criteria: Use cross-validation to avoid overfitting ...

Additive logistic regression

- Can use the logit transformation to get algorithm for classification
 - More precisely, class probability estimation
 - Probability estimation problem is transformed into regression problem
 - Regression scheme is used as base learner (e.g. regression tree learner)
- Can use forward stagewise algorithm: at each stage, add model that maximizes probability of data
 - If \(f_j \) is the \(j \)th regression model, the ensemble predicts probability
 \[
 p(y | \tilde{a}) = \frac{1}{1 + \exp(- \sum f_j / a)}
 \] for the first class

LogitBoost (for 2-class problems)

Model generation

For \(j = 1 \) to \(t \) iterations:
- For each instance \(a[i] \):
 - Set the target value for the regression to
 \[
 z[i] = (y[i] - p(1|a[i])) / \{(p(1|a[i]) \times (1 - p(1|a[i]))
 \]
 - Set the weight of instance \(a[i] \) to \(p(1|a[i]) \times (1 - p(1|a[i]))
- Fit a regression model \(f[j] \) to the data with class values \(z[i] \) and weights \(w[i] \)

Classification

Predict 1" class if \(p(1 | a) > 0.5 \), otherwise predict 2" class

- Maximizes probability if base learner minimizes squared error
- Difference to AdaBoost: optimizes probability/likelihood instead of exponential loss; uses regression method as base
- Can be adapted to multi-class problems
- Shrinking and cross-validation-based selection apply

Option trees

- Issue: Ensembles are not interpretable
- Can we generate a single model?
 - One possibility: "cloning" the ensemble by using lots of artificial data that is labeled by ensemble
 - Another possibility: generating a single structure that represents ensemble in compact fashion
- Option tree: decision tree with option nodes
 - Idea: follow all possible branches at option node
 - Predictions from different branches are merged using voting or by averaging probability estimates

Example

- Can be learned by modifying tree learner:
 - Create option node if there are several equally promising splits (within user-specified interval)
 - When pruning, error at option node is average error of options

Alternating decision trees

- Can also grow option tree by incrementally adding nodes to it via a boosting algorithm
- Structure called alternating decision tree, with splitter nodes and prediction nodes
 - Prediction nodes are leaves if no splitter nodes have been added to them yet
 - Standard alternating tree applies to 2-class problems
- To obtain prediction, filter instance down all applicable branches and sum predictions
 - Predict one class or the other depending on whether the sum is positive or negative
Growing alternating trees

- Tree is grown using a boosting algorithm
 - E.g. LogitBoost described earlier
 - Assume that base learner produces single conjunctive rule in each boosting iteration (note: rule for regression)
 - Each rule could simply be added into the tree, including the numeric prediction obtained from the rule
 - Problem: tree would grow very large very quickly
 - Solution: base learner should only consider candidate rules that extend existing branches
 - Extension adds splitter node and two prediction nodes (assuming binary split)
 - Standard algorithm chooses best extension among all possible extensions applicable to tree
 - More efficient heuristics can be employed instead

More boosting in WEKA ...

- Add'l. Metalearning algos for boosting (see pp. 415-416)
 - Enhance performance of regression method by iteratively fitting the residuals
 - weka.classifiers.meta.AdditiveRegression
 - Perform additive logistic regression
 - weka.classifiers.meta.LogitBoost
 - Batch-based incremental learning by racing logit-boosted committees
 - weka.classifiers.meta.RacedIncrementalLogitBoost

Stacking

- To combine predictions of base learners, don’t vote, use meta learner
 - Base learners: level-0 models
 - Meta learner: level-1 model
 - Predictions of base learners are input to meta learner
 - Base learners are usually different schemes
 - Can’t use predictions on training data to generate data for level-1 model!
 - Instead use cross-validation-like scheme
 - Hard to analyze theoretically: “black magic”
More on stacking

- If base learners can output probabilities, use those as input to meta learner instead
- Which algorithm to use for meta learner?
 - In principle, any learning scheme
 - Prefer "relatively global, smooth" model
 - Base learners do most of the work
 - Reduces risk of overfitting
- Stacking can be applied to numeric prediction too

More on ECOCs

- Two criteria:
 - **Row separation:** minimum distance between rows
 - **Column separation:** minimum distance between columns
 - (and columns' complements)
 - Why? Because if columns are identical, base classifiers will likely make the same errors
 - Error-correction is weakened if errors are correlated
- 3 classes \(\Rightarrow \) only \(2^3 \) possible columns
- (and 4 out of the 8 are complements)
- Cannot achieve row and column separation
- Only works for problems with > 3 classes

ECOC: Error-correcting output codes

- Multiclass problem \(\Rightarrow \) binary problems
 - Simple scheme: One-per-class coding
 - Idea: use error-correcting codes instead
 - Base classifiers predict 1011111, true class = ??
 - Use code words that have large Hamming distance between any pair
 - Can correct up to \((d - 1)/2\) single-bit errors

More on ECOCs

- More classes \(\Rightarrow \) exhaustive codes infeasible
- Number of columns increases exponentially
- Random code words have good error-correcting properties on average!
- There are sophisticated methods for generating ECOCs with just a few columns
- ECOCs don’t work with NN classifier
- But: works if different attribute subsets are used to predict each output bit

Exhaustive ECOCs

- Exhaustive code for \(k \) classes:
 - Columns comprise every possible \(k \)-string …
 - … except for complements and all-zero/one strings
 - Each code word contains \(2^{k-1} - 1 \) bits
- Class 1: code word is all ones
- Class 2: \(2^{k-2} \) zeroes followed by \(2^{k-2} - 1 \) ones
- Class \(i \) : alternating runs of \(2^{k-i} \) 0s and 1s
- Last run is one short

Stacking in WEKA ...

- Classifiers: Support Vector Machine, K Nearest Neighbours, Multilayer Perceptron, Naive Bayes, Decision Table
- Stacking method: "Randomized Stacking"
- Stack size: 30
- Stacking attributes: Bayesian, C4.5, Naive Bayes, C5.0, KNearest Neighbours
- Output: 3,000 runs
Stacking in WEKA ...

- Metalearning algos for stacking (see pp. 415-416)
 - Combine several classifiers via stacking
 - `weka.classifiers.meta.Stacking`
 - More efficient version of stacking
 - `weka.classifiers.meta.StackingC`
 - Metalearners whose inputs are base-level predictions marked as correct or incorrect
 - `weka.classifiers.meta.Grading`

6. Using unlabeled data

- Semisupervised learning: attempts to use unlabeled data as well as labeled data
 - The aim is to improve classification performance
 - Why try to do this? Unlabeled data is often plentiful and labeling data can be expensive
 - Web mining: classifying web pages
 - Text mining: identifying names in text
 - Video mining: classifying people in the news
 - Leveraging the large pool of unlabeled examples would be very attractive

Clustering for classification

- Idea: use naive Bayes on labeled examples and then apply EM
 - First, build naive Bayes model on labeled data
 - Second, label unlabeled data based on class probabilities (“expectation” step)
 - Third, train new naive Bayes model based on all the data (“maximization” step)
 - Fourth, repeat 2nd and 3rd step until convergence
 - Essentially the same as EM for clustering with fixed cluster membership probabilities for labeled data and \#clusters = \#classes

Comments

- Has been applied successfully to document classification
 - Certain phrases are indicative of classes
 - Some of these phrases occur only in the unlabeled data, some in both sets
 - EM can generalize the model by taking advantage of co-occurrence of these phrases
 - Refinement 1: reduce weight of unlabeled data
 - Refinement 2: allow multiple clusters per class

Co-training

- Method for learning from multiple views (multiple sets of attributes), e.g.:
 - First set of attributes describes content of web page
 - Second set of attributes describes links that link to the web page
 - Step 1: build model from each view
 - Step 2: use models to assign labels to unlabeled data
 - Step 3: select those unlabeled examples that were most confidently predicted (ideally, preserving ratio of classes)
 - Step 4: add those examples to the training set
 - Step 5: go to Step 1 until data exhausted
 - Assumption: views are independent

EM and co-training

- Like EM for semisupervised learning, but view is switched in each iteration of EM
 - Uses all the unlabeled data (probabilistically labeled) for training
 - Has also been used successfully with support vector machines
 - Using logistic models fit to output of SVMs
 - Co-training also seems to work when views are chosen randomly!
 - Why? Possibly because co-trained classifier is more robust