Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 3 of *Data Mining* by I. H. Witten and E. Frank
Output: Knowledge representation

- Decision tables
- Decision trees
- Decision rules
- Association rules
- Rules with exceptions
- Rules involving relations
- Linear regression
- Trees for numeric prediction
- Instance-based representation
- Clusters
Output: representing structural patterns

- Many different ways of representing patterns
 - Decision trees, rules, instance-based, ...
- Also called “knowledge” representation
- Representation determines inference method
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g. classification, regression, …)
Decision tables

- Simplest way of representing output:
 - Use the same format as input!

- Decision table for the weather problem:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Humidity</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Normal</td>
<td>No</td>
</tr>
</tbody>
</table>

- Main problem: selecting the right attributes
Decision trees

- “Divide-and-conquer” approach produces tree
- Nodes involve testing a particular attribute
- Usually, attribute value is compared to constant
- Other possibilities:
 - Comparing values of two attributes
 - Using a function of one or more attributes
- Leaves assign classification, set of classifications, or probability distribution to instances
- Unknown instance is routed down the tree
• **Nominal:**
 number of children usually equal to number values
 ⇒ attribute won’t get tested more than once
• Other possibility: division into two subsets

• **Numeric:**
 test whether value is greater or less than constant
 ⇒ attribute may get tested several times
• Other possibility: three-way split (or multi-way split)
 • Integer: *less than, equal to, greater than*
 • Real: *below, within, above*
Missing values

• Does absence of value have some significance?
 • Yes ⇒ “missing” is a separate value
 • No ⇒ “missing” must be treated in a special way
 ◦ Solution A: assign instance to most popular branch
 ◦ Solution B: split instance into pieces
 • Pieces receive weight according to fraction of training instances that go down each branch
 • Classifications from leave nodes are combined using the weights that have percolated to them
Classification rules

- Popular alternative to decision trees
- **Antecedent** (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- **Consequent** (conclusion): classes, set of classes, or probability distribution assigned by rule
- Individual rules are often logically ORed together
 - Conflicts arise if different conclusions apply
From trees to rules

- **Easy: converting a tree into a set of rules**
 - One rule for each leaf:
 - Antecedent contains a condition for every node on the path from the root to the leaf
 - Consequent is class assigned by the leaf

- **Produces rules that are unambiguous**
 - Doesn’t matter in which order they are executed

- **But: resulting rules are unnecessarily complex**
 - Pruning to remove redundant tests/rules
From rules to trees

- More difficult: transforming a rule set into a tree
 - Tree cannot easily express disjunction between rules
- Example: rules which test different attributes

If a and b then x
If c and d then x

- Symmetry needs to be broken
- Corresponding tree contains identical subtrees
 (⇒ “replicated subtree problem”)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)
A tree for a simple disjunction

replicated subtree problem
The exclusive-or problem

If $x = 1$ and $y = 0$
then class = a

If $x = 0$ and $y = 1$
then class = a

If $x = 0$ and $y = 0$
then class = b

If $x = 1$ and $y = 1$
then class = b

decision tree

rules
A tree with a replicated subtree

If \(x = 1 \) and \(y = 1 \)
then class = a

If \(z = 1 \) and \(w = 1 \)
then class = a

Otherwise class = b
“Nuggets” of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules ("decision list")
 - Order is important for interpretation
 - Unordered set of rules
 - Rules may overlap and lead to different conclusions for the same instance
Interpreting rules

- What if two or more rules conflict?
 - Give no conclusion at all?
 - Go with rule that is most popular on training data?
 - ...

- What if no rule applies to a test instance?
 - Give no conclusion at all?
 - Go with class that is most frequent in training data?
 - ...
Special case: boolean class

- Assumption: if instance does not belong to class “yes”, it belongs to class “no”
- Trick: only learn rules for class “yes” and use default rule for “no”

\[
\begin{align*}
\text{If } x = 1 \text{ and } y = 1 \text{ then class } &= a \\
\text{If } z = 1 \text{ and } w = 1 \text{ then class } &= a \\
\text{Otherwise class } &= b
\end{align*}
\]

- Order of rules is not important. No conflicts!
- Rule can be written in disjunctive normal form
Association rules

- Association rules...
 - ... can predict any attribute and combinations of attributes
 - ... are not intended to be used together as a set
- Problem: immense number of possible associations
 - Output needs to be restricted to show only the most predictive associations \(\Rightarrow\) only those with high support and high confidence
Support and confidence of a rule

- **Support:** number of instances predicted correctly
- **Confidence:** number of correct predictions, as proportion of all instances that rule applies to
- **Example:** 4 cool days with normal humidity

\[\text{If temperature} = \text{cool} \text{ then humidity} = \text{normal}\]

\[\Rightarrow \text{Support} = 4, \text{confidence} = 100\%\]

- **Normally:** minimum support and confidence pre-specified (e.g. 58 rules with support ≥ 2 and confidence $\geq 95\%$ for weather data)
Interpreting association rules

- Interpretation is not obvious:

 If windy = false and play = no then outlook = sunny
 and humidity = high

 is not the same as

 If windy = false and play = no then outlook = sunny
 If windy = false and play = no then humidity = high

- It means that the following also holds:

 If humidity = high and windy = false and play = no
 then outlook = sunny
Rules with exceptions

- Idea: allow rules to have *exceptions*
- Example: rule for iris data

If petal-length \(\geq 2.45 \) and petal-length < 4.45 then Iris-versicolor

- **New instance:**

<table>
<thead>
<tr>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>2.6</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
</tbody>
</table>

- **Modified rule:**

If petal-length \(\geq 2.45 \) and petal-length < 4.45 then Iris-versicolor
EXCEPT if petal-width < 1.0 then Iris-setosa
A more complex example

- Exceptions to exceptions to exceptions …

```plaintext
default: Iris-setosa
except if petal-length ≥ 2.45 and petal-length < 5.355
    and petal-width < 1.75
    then Iris-versicolor
        except if petal-length ≥ 4.95 and petal-width < 1.55
            then Iris-virginica
        else if sepal-length < 4.95 and sepal-width ≥ 2.45
            then Iris-virginica
    else if petal-length ≥ 3.35
        then Iris-virginica
            except if petal-length < 4.85 and sepal-length < 5.95
                then Iris-versicolor
```
Advantages of using exceptions

- Rules can be updated incrementally
 - Easy to incorporate new data
 - Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
 - Locality property is important for understanding large rule sets
 - “Normal” rule sets don’t offer this advantage
More on exceptions

- Default...except if...then...
 is logically equivalent to
 if...then...else
 (where the else specifies what the default did)

- But: exceptions offer a psychological advantage
 - Assumption: defaults and tests early on apply more widely than exceptions further down
 - Exceptions reflect special cases
Rules involving relations

- So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)
- These rules are called “propositional” because they have the same expressive power as propositional logic
- What if problem involves relationships between examples (e.g. family tree problem from above)?
 - Can’t be expressed with propositional rules
 - More expressive representation required
The shapes problem

- **Target concept:** *standing up*
- **Shaded:** *standing*
 - **Unshaded:** *lying*
A propositional solution

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Sides</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>Standing</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>Lying</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>Lying</td>
</tr>
</tbody>
</table>

If width ≥ 3.5 and height < 7.0 then lying
If height ≥ 3.5 then standing
A relational solution

- Comparing attributes with each other

 If width > height then lying
 If height > width then standing

- Generalizes better to new data
- Standard relations: =, <, >
- But: learning relational rules is costly
- Simple solution: add extra attributes (e.g. a binary attribute is $width < height$)
Rules with variables

• Using variables and multiple relations:

\[
\text{If } \text{height_and_width_of}(x, h, w) \text{ and } h > w \text{ then standing}(x)
\]

• The top of a tower of blocks is standing:

\[
\text{If } \text{height_and_width_of}(x, h, w) \text{ and } h > w \text{ and } \text{is_top_of}(x, y) \text{ then standing}(x)
\]

• The whole tower is standing:

\[
\begin{align*}
\text{If } & \text{is_top_of}(x, z) \text{ and } \\
& \text{height_and_width_of}(z, h, w) \text{ and } h > w \text{ and } \\
& \text{is_rest_of}(x, y) \text{ and standing}(y) \text{ then standing}(x) \\
\text{If } & \text{empty}(x) \text{ then standing}(x)
\end{align*}
\]

• Recursive definition!
Inductive logic programming

• Recursive definition can be seen as logic program
• Techniques for learning logic programs stem from the area of “inductive logic programming” (ILP)
• But: recursive definitions are hard to learn
 ♦ Also: few practical problems require recursion
 ♦ Thus: many ILP techniques are restricted to non-recursive definitions to make learning easier
Trees for numeric prediction

- **Regression**: the process of computing an expression that predicts a numeric quantity
- **Regression tree**: “decision tree” where each leaf predicts a numeric quantity
 - Predicted value is average value of training instances that reach the leaf
- **Model tree**: “regression tree” with linear regression models at the leaf nodes
 - Linear patches approximate continuous function
Linear regression for the CPU data

\[
PRP = -56.1 + 0.049 \text{ MYCT} + 0.015 \text{ MMIN} + 0.006 \text{ MMAX} + 0.630 \text{ CACH} - 0.270 \text{ CHMIN} + 1.46 \text{ CHMAX}
\]
Regression tree for the CPU data

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)
Model tree for the CPU data
Instance-based representation

- Simplest form of learning: *rote learning*
 - Training instances are searched for instance that most closely resembles new instance
 - The instances themselves represent the knowledge
 - Also called *instance-based* learning
- Similarity function defines what’s “learned”
- Instance-based learning is *lazy* learning
- Methods: *nearest-neighbor, k-nearest-neighbor, …*
The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 - Weighting the attributes might be necessary
Learning prototypes

- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use *prototypical* examples
Rectangular generalizations

- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than “normal” rules.)
- Nested rectangles are rules with exceptions
Representing clusters I

Simple 2-D representation

Venn diagram

Overlapping clusters
Representing clusters II

Probabilistic assignment

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>e</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>g</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dendrogram

NB: dendron is the Greek word for tree