Data Mining

Practical Machine Learning Tools and Techniques

Slides for Chapter 2 of *Data Mining* by I. H. Witten and E. Frank

Terminology

- Components of the input:
 - Concepts: kinds of things that can be learned
 - Aim: intelligible and operational concept description
 - Instances: the individual, independent examples of a concept
 - Note: more complicated forms of input are possible
 - Attributes: measuring aspects of an instance
 - We will focus on nominal and numeric ones

What’s a concept?

- **Styles of learning:**
 - Classification learning: predicting a discrete class
 - Association learning: detecting associations between features
 - Clustering: grouping similar instances into clusters
 - Numeric prediction: predicting a numeric quantity

Classification learning

- Example problems: weather data, contact lenses, irises, labor negotiations
- Classification learning is *supervised*
 - Scheme is provided with actual outcome
- Outcome is called the *class* of the example
- Measure success on fresh data for which class labels are known (*test data*)
- In practice success is often measured subjectively

Association learning

- Can be applied if no class is specified and any kind of structure is considered “interesting”
- Difference to classification learning:
 - Can predict any attribute’s value, not just the class, and more than one attribute’s value at a time
 - Hence: far more association rules than classification rules
 - Thus: constraints are necessary
 - Minimum coverage and minimum accuracy
Clustering

- Finding groups of items that are similar
- Clustering is **unsupervised**
- The class of an example is not known

Success often measured subjectively

<table>
<thead>
<tr>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iris setosa</td>
</tr>
<tr>
<td>51</td>
<td>7.0</td>
<td>3.2</td>
<td>4.7</td>
<td>1.4</td>
</tr>
<tr>
<td>52</td>
<td>6.4</td>
<td>3.2</td>
<td>4.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iris versicolor</td>
</tr>
<tr>
<td>101</td>
<td>6.3</td>
<td>3.3</td>
<td>6.0</td>
<td>2.5</td>
</tr>
<tr>
<td>102</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iris virginica</td>
</tr>
</tbody>
</table>

Numeric prediction

- Variant of classification learning where “class” is numeric (also called “regression”)
- Learning is supervised
 - Scheme is being provided with target value
 - Measure success on test data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>5</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>55</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>40</td>
</tr>
</tbody>
</table>

What’s in an example?

- Instance: specific type of example
- Thing to be classified, associated, or clustered
- Individual, independent example of target concept
- Characterized by a predetermined set of attributes
- Input to learning scheme: set of instances/dataset
 - Represented as a single relation/flat file
 - Rather restricted form of input
 - No relationships between objects
- Most common form in practical data mining

A family tree

- **Peter** M = **Peggy** F
- **Grace** F = **Ray** M

```
  Peter M
  |   |
  |   |
  Steven M
  |   |
  |   |
  Graham M
  |   |
  Pam F
  |   |
  |   |
  Ian M
  |   |
  |   |
  |   |
  Brian M
  |   |
  |   |
  |   |
  Anna F
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
  |   |
A full representation in one table

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Ancestor of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Gender</td>
<td>Parent1</td>
</tr>
<tr>
<td>Steven</td>
<td>Male</td>
<td>Peter</td>
</tr>
<tr>
<td>Graham</td>
<td>Male</td>
<td>Peter</td>
</tr>
<tr>
<td>Lee</td>
<td>Male</td>
<td>Grace</td>
</tr>
<tr>
<td>Brian</td>
<td>Male</td>
<td>Grace</td>
</tr>
<tr>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
</tr>
<tr>
<td>Nikki</td>
<td>Female</td>
<td>Peter</td>
</tr>
</tbody>
</table>

If second person's gender = female
and first person's parent = second person's parent
then sister-of = yes

Generating a flat file

Process of flattening called “denormalization”
Several relations are joined together to make one
Possible with any finite set of finite relations
Problematic: relationships without pre-specified number of objects
Example: concept of nuclear-family
Denormalization may produce spurious regularities that reflect structure of database
Example: “supplier” predicts “supplier address”

The “ancestor-of” relation

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Ancestor of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Gender</td>
<td>Parent1</td>
</tr>
<tr>
<td>Peter</td>
<td>Male</td>
<td>Grace</td>
</tr>
<tr>
<td>Peter</td>
<td>Male</td>
<td>Anna</td>
</tr>
<tr>
<td>Peter</td>
<td>Male</td>
<td>Nikki</td>
</tr>
<tr>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
</tr>
<tr>
<td>Grace</td>
<td>Female</td>
<td>Ian</td>
</tr>
<tr>
<td>Grace</td>
<td>Female</td>
<td>Ian</td>
</tr>
<tr>
<td>Other positive examples here</td>
<td>Yes</td>
<td>All the rest</td>
</tr>
</tbody>
</table>

What’s in an attribute?

Each instance is described by a fixed predefined set of features, its “attributes”
But: number of attributes may vary in practice
Possible solution: “irrelevant value” flag
Related problem: existence of an attribute may depend on value of another one
Possible attribute types (“levels of measurement”):
- Nominal, ordinal, interval and ratio

Nominal quantities

Values are distinct symbols
Values themselves serve only as labels or names
Nominal comes from the Latin word for name
Example: attribute “outlook” from weather data
Values: “sunny”, “overcast”, and “rainy”
No relation is implied among nominal values (no ordering or distance measure)
Only equality tests can be performed
 Ordinal quantities

- Impose order on values
- But: no distance between values defined
- Example: attribute “temperature” in weather data
  - Values: “hot” > “mild” > “cool”
- Note: addition and subtraction don’t make sense
- Example rule:
  - temperature < hot ⇒ play = yes
- Distinction between nominal and ordinal not always clear (e.g. attribute “outlook”)

 Interval quantities

- Interval quantities are not only ordered but measured in fixed and equal units
- Example 1: attribute “temperature” expressed in degrees Fahrenheit
- Example 2: attribute “year”
- Difference of two values makes sense
- Sum or product doesn’t make sense
  - Zero point is not defined!

 Ratio quantities

- Ratio quantities are ones for which the measurement scheme defines a zero point
- Example: attribute “distance”
  - Distance between an object and itself is zero
- Ratio quantities are treated as real numbers
  - All mathematical operations are allowed
- But: is there an “inherently” defined zero point?
  - Answer depends on scientific knowledge (e.g. Fahrenheit knew no lower limit to temperature)

 Attribute types used in practice

- Most schemes accommodate just two levels of measurement: nominal and ordinal
- Nominal attributes are also called “categorical”, “enumerated”, or “discrete”
  - But: “enumerated” and “discrete” imply order
- Special case: dichotomy (“boolean” attribute)
- Ordinal attributes are called “numeric”, or “continuous”
  - But: “continuous” implies mathematical continuity

 Metadata

- Information about the data that encodes background knowledge
- Can be used to restrict search space
- Examples:
  - Dimensional considerations
    - i.e. expressions must be dimensionally correct
  - Circular orderings
    - e.g. degrees in compass
  - Partial orderings
    - e.g. generalization/specialization relations

 Preparing the input

- Denormalization is not the only issue
- Problem: different data sources (e.g. sales department, customer billing department, …)
  - Differences: styles of record keeping, conventions, time periods, data aggregation, primary keys, errors
  - Data must be assembled, integrated, cleaned up
  - “Data warehouse”: consistent point of access
- External data may be required (“overlay data”)”
- Critical: type and level of data aggregation
The ARFF format

% ARFF file for weather data with some numeric features
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}
@attribute play? {yes, no}
data
sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
...

Additional attribute types

ARFF supports string attributes:

@attribute description string

Similar to nominal attributes but list of values is not pre-specified

It also supports date attributes:

@attribute today date

Uses the ISO-8601 combined date and time format yyyy-MM-dd-THH:mm:ss

Sparse data

In some applications most attribute values in a dataset are zero
E.g.: word counts in a text categorization problem
ARFF supports sparse data

0, 26, 0, 0, 0, 63, 0, 0, 0, "class A"
0, 0, 0, 42, 0, 0, 0, 0, 0, "class B"

{1 26, 6 63, 10 "class A"}
{3 42, 10 "class B"}

This also works for nominal attributes
where the first value corresponds to "true"

Attribute types

Interpretation of attribute types in ARFF depends on learning scheme

Numeric attributes are interpreted as
- ordinal scales if less-than and greater-than are used
- ratio scales if distance calculations are performed (normalization/standardization may be required)

Instance-based schemes define distance between nominal values (0 if values are equal, 1 otherwise)

Integers in some given data file: nominal, ordinal, or ratio scale?

Nominal vs. ordinal

Attribute “age” nominal
If age = young and astigmatic = no
and tear production rate = normal
then recommendation = soft
If age = pre-presbyopic and astigmatic = no
and tear production rate = normal
then recommendation = soft

Attribute “age” ordinal
(e.g. “young” < “pre-presbyopic” < “presbyopic”)
If age > pre-presbyopic and astigmatic = no
and tear production rate = normal
then recommendation = soft

Missing values

Frequently indicated by out-of-range entries
Types: unknown, unrecorded, irrelevant
Reasons:
- malfunctioning equipment
- changes in experimental design
- collation of different datasets
- measurement not possible

Missing value may have significance in itself
(e.g. missing test in a medical examination)
Most schemes assume that is not the case:
“missing” may need to be coded as additional value

California State University, Chico
Inaccurate values

- Reason: data has not been collected for mining it
- Result: errors and omissions that don’t affect original purpose of data (e.g. age of customer)
- Typographical errors in nominal attributes? values need to be checked for consistency
- Typographical and measurement errors in numeric attributes? outliers need to be identified
- Errors may be deliberate (e.g. wrong zip codes)
- Other problems: duplicates, stale data

Getting to know the data

- Simple visualization tools are very useful
  - Nominal attributes: histograms (Distribution consistent with background knowledge?)
  - Numeric attributes: graphs (Any obvious outliers?)
- 2-D and 3-D plots show dependencies
- Need to consult domain experts
- Too much data to inspect? Take a sample!