The Predicate Calculus

2.0 Introduction
2.1 The Propositional Calculus
2.2 The Predicate Calculus
2.3 Using Inference Rules to Produce Predicate Calculus Expressions
2.4 Application: A Logic-Based Financial Advisor
2.5 Epilogue and References
2.6 Exercises
DEFINITION

PROPOSITIONAL CALCULUS SYMBOLS

The *symbols* of propositional calculus are the propositional symbols:

\[P, Q, R, S, \ldots \]

truth symbols:

true, false

and connectives:

\[\land, \lor, \neg, \rightarrow, \equiv \]
Definition

Propositional Calculus Sentences

Every propositional symbol and truth symbol is a sentence.

For example: true, P, Q, and R are sentences.

The *negation* of a sentence is a sentence.

For example: ¬P and ¬false are sentences.

The *conjunction*, or *and*, of two sentences is a sentence.

For example: P ∧ ¬P is a sentence.

The *disjunction*, or *or*, of two sentences is a sentence.

For example: P ∨ ¬P is a sentence.

The *implication* of one sentence from another is a sentence.

For example: P → Q is a sentence.

The *equivalence* of two sentences is a sentence.

For example: P ∨ Q ≡ R is a sentence.

Legal sentences are also called *well-formed formulas* or *WFFs*.
DEFINITION

PROPOSITIONAL CALCULUS SEMANTICS

An *interpretation* of a set of propositions is the assignment of a truth value, either T or F, to each propositional symbol.

The symbol *true* is always assigned T, and the symbol *false* is assigned F.

The interpretation or truth value for sentences is determined by:

- The truth assignment of *negation*, \(\neg P \), where \(P \) is any propositional symbol, is F if the assignment to \(P \) is T, and T if the assignment to \(P \) is F.

- The truth assignment of *conjunction*, \(\land \), is T only when both conjuncts have truth value T; otherwise it is F.

- The truth assignment of *disjunction*, \(\lor \), is F only when both disjuncts have truth value F; otherwise it is T.

- The truth assignment of *implication*, \(\rightarrow \), is F only when the premise or symbol before the implication is T and the truth value of the consequent or symbol after the implication is F; otherwise it is T.

- The truth assignment of *equivalence*, \(\equiv \), is T only when both expressions have the same truth assignment for all possible interpretations; otherwise it is F.
For propositional expressions P, Q and R:

\[\neg (\neg P) \equiv P \]

\[(P \lor Q) \equiv (\neg P \rightarrow Q) \]

the contrapositive law: $(P \rightarrow Q) \equiv (\neg Q \rightarrow \neg P)$

de Morgan’s law: $\neg (P \lor Q) \equiv (\neg P \land \neg Q)$ and $\neg (P \land Q) \equiv (\neg P \lor \neg Q)$

the commutative laws: $(P \land Q) \equiv (Q \land P)$ and $(P \lor Q) \equiv (Q \lor P)$

the associative law: $((P \land Q) \land R) \equiv (P \land (Q \land R))$

the associative law: $((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$

the distributive law: $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

the distributive law: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
Figure 2.1: Truth table for the operator \land.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Figure 2.2: Truth table demonstrating the equivalence of $P \land Q$ and $\neg P / Q$.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
DEFINITION

PREDICATE CALCULUS SYMBOLS

The alphabet that makes up the symbols of the predicate calculus consists of:

1. The set of letters, both upper- and lowercase, of the English alphabet.
2. The set of digits, 0, 1, ..., 9.
3. The underscore, _.

Symbols in the predicate calculus begin with a letter and are followed by any sequence of these legal characters.

Legitimate characters in the alphabet of predicate calculus symbols include

a R 6 9 p _ z

Examples of characters not in the alphabet include

% @ / & “ ”

Legitimate predicate calculus symbols include

George fire3 tom_and_jerry bill XXXX friends_of

Examples of strings that are not legal symbols are

3jack “no blanks allowed” ab%cd ***71 duck!!!
DEFINITION

SYMBOLS and TERMS

Predicate calculus symbols include:

1. *Truth symbols* **true** and **false** (these are reserved symbols).

2. *Constant symbols* are symbol expressions having the first character lowercase.

3. *Variable symbols* are symbol expressions beginning with an uppercase character.

4. *Function symbols* are symbol expressions having the first character lowercase. Functions have an attached arity indicating the number of elements of the domain mapped onto each element of the range.

A *function expression* consists of a function constant of arity \(n \), followed by \(n \) terms, \(t_1, t_2, ..., t_n \), enclosed in parentheses and separated by commas.

A predicate calculus *term* is either a constant, variable, or function expression.
DEFINITION

PREDICATES and ATOMIC SENTENCES

Predicate symbols are symbols beginning with a lowercase letter.

Predicates have an associated positive integer referred to as the *arity* or “argument number” for the predicate. Predicates with the same name but different arities are considered distinct.

An atomic sentence is a predicate constant of arity n, followed by n terms, $t_1, t_2, ..., t_n$, enclosed in parentheses and separated by commas.

The truth values, **true** and **false**, are also atomic sentences.
DEFINITION

PREDICATE CALCULUS SENTENCES

Every atomic sentence is a sentence.

1. If s is a sentence, then so is its negation, $\neg s$.
2. If s_1 and s_2 are sentences, then so is their conjunction, $s_1 \land s_2$.
3. If s_1 and s_2 are sentences, then so is their disjunction, $s_1 \lor s_2$.
4. If s_1 and s_2 are sentences, then so is their implication, $s_1 \rightarrow s_2$.
5. If s_1 and s_2 are sentences, then so is their equivalence, $s_1 \equiv s_2$.
6. If X is a variable and s a sentence, then $\forall X s$ is a sentence.
7. If X is a variable and s a sentence, then $\exists X s$ is a sentence.
verify_sentence algorithm

function verify_sentence(expression);
begin
 case
 expression is an atomic sentence: return SUCCESS;
 expression is of the form $Q \, X \, s$, where Q is either \forall or \exists, X is a variable, and s is an expression;
 if verify_sentence(s) returns SUCCESS
 then return SUCCESS
 else return FAIL;
 expression is of the form $\neg \, s$:
 if verify_sentence(s) returns SUCCESS
 then return SUCCESS
 else return FAIL;
 expression is of the form $s_1 \, \text{op} \, s_2$, where \text{op} is a binary logical operator:
 if verify_sentence(s_1) returns SUCCESS and verify_sentence(s_2) returns SUCCESS
 then return SUCCESS
 else return FAIL;
 otherwise: return FAIL
 end
end.
DEFINITION

INTERPRETATION

Let the domain D be a nonempty set.

An interpretation over D is an assignment of the entities of D to each of the constant, variable, predicate, and function symbols of a predicate calculus expression, such that:

1. Each constant is assigned an element of D.
2. Each variable is assigned to a nonempty subset of D; these are the allowable substitutions for that variable.
3. Each function f of arity m is defined on m arguments of D and defines a mapping from D^m into D.
4. Each predicate p of arity n is defined on n arguments from D and defines a mapping from D^n into $\{T, F\}$.
DEFINITION

TRUTH VALUE OF PREDICATE CALCULUS EXPRESSIONS

Assume an expression E and an interpretation I for E over a nonempty domain D. The truth value for E is determined by:

1. The value of a constant is the element of D it is assigned to by I.
2. The value of a variable is the set of elements of D it is assigned to by I.
3. The value of a function expression is that element of D obtained by evaluating the function for the parameter values assigned by the interpretation.
4. The value of truth symbol “true” is T and “false” is F.
5. The value of an atomic sentence is either T or F, as determined by the
6. The value of the negation of a sentence is T if the value of the sentence is F and is F if the value of the sentence is T.
7. The value of the conjunction of two sentences is T if the value of both sentences is T and is F otherwise.
8.-10. The truth value of expressions using \lor, \rightarrow, and \equiv is determined from the value of their operands as defined in Section 2.1.2.

Finally, for a variable X and a sentence S containing X:

11. The value of $\forall X S$ is T if S is T for all assignments to X under I, and it is F otherwise.
12. The value of $\exists X S$ is T if there is an assignment to X in the interpretation under which S is T; otherwise it is F.
DEFINITION

FIRST-ORDER PREDICATE CALCULUS

First-order predicate calculus allows quantified variables to refer to objects in the domain of discourse and not to predicates or functions.
Figure 2.3: A blocks world with its predicate calculate description.
Definition

Satisfy, Model, Valid, Inconsistent

For a predicate calculus expression X and an interpretation I:

- If X has a value of T under I and a particular variable assignment, then I is said to satisfy X.

- If I satisfies X for all variable assignments, then I is a model of X.

X is satisfiable if and only if there exist an interpretation and variable assignment that satisfy it; otherwise, it is unsatisfiable.

A set of expressions is satisfiable if and only if there exist an interpretation and variable assignment that satisfy every element.

If a set of expressions is not satisfiable, it is said to be inconsistent.

If X has a value T for all possible interpretations, X is said to be valid.
DEFINITION

PROOF PROCEDURE

A *proof procedure* is a combination of an inference rule and an algorithm for applying that rule to a set of logical expressions to generate new sentences.

We present proof procedures for the *resolution* inference rule in Chapter 12.
DEFINITION

LOGICALLY FOLLOWS, SOUND, and COMPLETE

A predicate calculus expression X logically follows from a set S of predicate calculus expressions if every interpretation and variable assignment that satisfies S also satisfies X.

An inference rule is sound if every predicate calculus expression produced by the rule from a set S of predicate calculus expressions also logically follows from S.

An inference rule is complete if, given a set S of predicate calculus expressions, the rule can infer every expression that logically follows from S.
DEFINITION

MODUS PONENTS, MODUS TOLLENS, AND ELIMINATION, AND INTRODUCTION, and UNIVERSAL INSTANTIATION

If the sentences P and $P \rightarrow Q$ are known to be true, then *modus ponens* lets us infer Q.

Under the inference rule *modus tollens*, if $P \rightarrow Q$ is known to be true and Q is known to be false, we can infer $\neg P$.

And elimination allows us to infer the truth of either of the conjuncts from the truth of a conjunctive sentence. For instance, $P \land Q$ lets us conclude P and Q are true.

And introduction lets us infer the truth of a conjunction from the truth of its conjuncts. For instance, if P and Q are true, then $P \land Q$ is true.

Universal instantiation states that if any universally quantified variable in a true sentence is replaced by any appropriate term from the domain, the result is a true sentence. Thus, if a is from the domain of X, $\forall X p(X)$ lets us infer $p(a)$.
DEFINITION

MOST GENERAL UNIFIER (mgu)

If \(s \) is any unifier of expressions \(E \), and \(g \) is the most general unifier of that set of expressions, then for \(s \) applied to \(E \) there exists another unifier \(s' \) such that \(Es = Egs' \), where \(Es \) and \(Egs' \) are the composition of unifiers applied to the expression \(E \).
function unify(E1, E2);
 begin
 case
 both E1 and E2 are constants or the empty list: %recursion stops
 if E1 = E2 then return {}
 else return FAIL;
 E1 is a variable:
 if E1 occurs in E2 then return FAIL
 else return {E2/E1};
 E2 is a variable:
 if E2 occurs in E1 then return FAIL
 else return {E1/E2}
 either E1 or E2 are empty then return FAIL %the lists are of different sizes
 otherwise: %both E1 and E2 are lists
 begin
 HE1 := first element of E1;
 HE2 := first element of E2;
 SUBS1 := unify(HE1,HE2);
 if SUBS1 := FAIL then return FAIL;
 TE1 := apply(SUBS1, rest of E1);
 TE2 := apply (SUBS1, rest of E2);
 SUBS2 := unify(TE1, TE2);
 if SUBS2 = FAIL then return FAIL;
 else return composition(SUBS1,SUBS2)
 end
 end case
 end
end
Figure 2.5: Further steps in the unification of \((\text{parents } X \ (\text{father } X) \ (\text{mother bill}))\) and \((\text{parents bill } (\text{father bill}) \ Y))\).
Figure 2.6: Final trace of the unification of (parents X (father X) (mother bill)) and (parents bill (father bill) Y).
1. \(\text{savings_account(inaequate)} \rightarrow \text{investment(savings)}. \)

2. \(\text{savings_account(adequate)} \land \text{income(adequate)} \rightarrow \text{investment(stocks)}. \)

3. \(\text{savings_account(adequate)} \land \text{income(inaequate)} \rightarrow \text{investment(combination)}. \)

4. \(\forall \text{amount_saved}(X) \land \exists Y (\text{dependents}(Y) \land \text{greater}(X, \text{minsavings}(Y))) \rightarrow \text{savings_account(adequate)}. \)

5. \(\forall X \text{amount_saved}(X) \land \exists Y (\text{dependents}(Y) \land \neg \text{greater}(X, \text{minsavings}(Y))) \rightarrow \text{savings_account(inaequate)}. \)

6. \(\forall X \text{earnings}(X, \text{steady}) \land \exists Y (\text{dependents}(Y) \land \text{greater}(X, \text{minincome}(Y))) \rightarrow \text{income(adequate)}. \)

7. \(\forall X \text{earnings}(X, \text{steady}) \land \exists Y (\text{dependents}(Y) \land \neg \text{greater}(X, \text{minincome}(Y))) \rightarrow \text{income(inaequate)}. \)

8. \(\forall X \text{earnings}(X, \text{unsteady}) \rightarrow \text{income(inaequate)}. \)

9. \(\text{amount_saved(22000)}. \)

10. \(\text{earnings(25000, steady)}. \)

11. \(\text{dependents(3)}. \)