Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 7 of Data Mining by I. H. Witten and E. Frank
Engineering the input and output

- **Attribute selection**
 - Scheme-independent, scheme-specific

- **Attribute discretization**
 - Unsupervised, supervised, error- vs entropy-based, converse of discretization

- **Data transformations**
 - Principal component analysis, random projections, text, time series

- **Dirty data**
 - Data cleansing, robust regression, anomaly detection

- **Meta-learning**
 - Bagging (with costs), randomization, boosting, additive (logistic) regression, option trees, logistic model trees, stacking, ECOCs

- **Using unlabeled data**
 - Clustering for classification, co-training, EM and co-training
Just apply a learner? NO!

- **Scheme/parameter selection**

 treat selection process as part of the learning process

- Modifying the input:

 - Data engineering to make learning possible or easier

- Modifying the output

 - Combining models to improve performance
1. Attribute selection

- Adding a random \((i.e. \text{irrelevant}) \) attribute can significantly degrade C4.5’s performance
 - Problem: attribute selection based on smaller and smaller amounts of data
- IBL very susceptible to irrelevant attributes
 - Number of training instances required increases exponentially with number of irrelevant attributes
- Naïve Bayes doesn’t have this problem
- But, \textit{relevant} attributes can also be harmful
Scheme-independent attribute selection

- **Filter approach**: assess based on general characteristics of the data
- **One method**: find smallest subset of attributes that separates data
- **Another method**: use different learning scheme
 - e.g. use attributes selected by C4.5 and 1R, or coefficients of linear model, possibly applied recursively (*recursive feature elimination*)
- **IBL-based attribute weighting techniques**:
 - can’t find redundant attributes (but fix has been suggested)
- **Correlation-based Feature Selection (CFS)**:
 - correlation between attributes measured by *symmetric uncertainty*:
 \[U(A, B) = 2 \frac{H(A) + H(B) - H(A, B)}{H(A) + H(B)} \in [0,1] \]
 - goodness of subset of attributes measured by (breaking ties in favor of smaller subsets):
 \[\sum_j \frac{U(A_j, C)}{\sqrt{\sum_i \sum_j U(A_i, A_j)}} \]
Attribute subsets for weather data

Diagram showing the relationships between attributes such as outlook, temperature, humidity, and windy, along with their subsets involving temperature, humidity, and windy conditions.
Searching attribute space

- Number of attribute subsets is exponential in number of attributes
- Common greedy approaches:
 - forward selection
 - backward elimination
- More sophisticated strategies:
 - Bidirectional search
 - Best-first search: can find optimum solution
 - Beam search: approximation to best-first search
 - Genetic algorithms
Scheme-specific selection

- **Wrapper** approach to attribute selection
- Implement “wrapper” around learning scheme
 - Evaluation criterion: cross-validation performance
- Time consuming
 - greedy approach, \(k \) attributes \(\Rightarrow k^2 \times \text{time} \)
 - prior ranking of attributes \(\Rightarrow \) linear in \(k \)
- Can use significance test to stop cross-validation for subset early if it is unlikely to “win” (*race search*)
 - can be used with forward, backward selection, prior ranking, or special-purpose schemata search
- Learning decision tables: scheme-specific attribute selection essential
- Efficient for decision tables and Naïve Bayes

Kohavi & John (1997)
WEKA's *Visualize* panel ...

- size of each plot
- size of each point
- amount of *jitter* (random displacement per point)
In WEKA ...

Attribute Evaluator
- Choose CfsSubsetEval

Search Method
- Choose BestFirst -D 1 -N 5

Attribute Selection Mode
- Use full training set

Attribute selection output

--- Attribute Selection on all input data ---

Search Method:
- Best first.
- Start set: no attributes
- Search direction: forward
- Stale search after 5 node expansions
- Total number of subsets evaluated: 11
- Merit of best subset found: 0.247

Attribute Subset Evaluator (supervised, Class (nominal)):
- CFS Subset Evaluator
- Including locally predictive attributes

Selected attributes: 1,3 : 2
- outlook
- humidity
In WEKA ...

- **Attribute subset evaluators** (see pp. 421-422)
 - Correlation-based feature selection (CFS)
 - `weka.attributeSelection.CfsSubsetEval`
 - Classifier subset evaluator
 - `weka.attributeSelection.ClassifierSubsetEval`
 - Consistency attribute subset evaluator
 - `weka.attributeSelection.ConsistencySubsetEval`
 - Use a classifier plus cross-validation
 - `weka.attributeSelection.WrapperSubsetEval`
In WEKA ...

- **Single attribute evaluators** (see pp. 421-423)
 - Chi-squared statistic
 - `weka.attributeSelection.ChiSquaredAttributeEval`
 - Gain ratio
 - `weka.attributeSelection.GainRatioAttributeEval`
 - Information gain
 - `weka.attributeSelection.InfoGainAttributeEval`
 - 1R methodology
 - `weka.attributeSelection.OneRAttributeEval`

continued ...
• Single attribute evaluators continued ...
 ♦ Principal components analysis (PCA) and transformation
 • `weka.attributeSelection.PrincipalComponents`
 ♦ Instance-based (Recursive Elimination of Features)
 • `weka.attributeSelection.ReliefFAttributeEval`
 ♦ Linear support vector machine (SVM)
 • `weka.attributeSelection.SVMAttributeEval`
 ♦ Symmetric uncertainty
 • `weka.attributeSelection.SymmetricalUncertAttributeEval`
In WEKA ...

![WEKA GUI showing attribute selection process]

Attribute Evaluator: CfsSubsetEval

Search Method: BestFirst -D 1 -N 5

Attribute selection output:

--- Attribute Selection on all input data ---

Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 11
Merit of best subset found: 0.247

Attribute Subset Evaluator (supervised, Class (nominal)):
CFS Subset Evaluator
Including locally predictive attributes

Selected attributes: 1,3 : 2
- outlook
- humidity
In WEKA ...

- **Search methods for attribute selection** (see pp. 421-425)
 - Greedy hill-climbing with / without backtracking
 - `weka.attributeSelection.BestFirst / GreedyStepwise`
 - Search exhaustively
 - `weka.attributeSelection.ExhaustiveSearch`
 - Search using a simple genetic algorithm (GA)
 - `weka.attributeSelection.GeneticSearch`
 - Race search methodology
 - `weka.attributeSelection.RaceSearch`
 - Random
 - `weka.attributeSelection.RandomSearch`
 - Sort attributes and rank via attribute subset evaluator
 - `weka.attributeSelection.RankSearch`
In WEKA ... another way ...
2. Attribute discretization

- Avoids normality assumption in Naïve Bayes and clustering
- 1R: uses simple discretization scheme
- C4.5 performs local discretization
- Global discretization can be advantageous because it is based on more data
- Apply learner to
 - k–valued discretized attribute or to
 - k–1 binary attributes that code the cut points
Discretization: unsupervised

- Determine intervals without knowing class labels
- When clustering, the only possible way!

- Two strategies:
 - Equal-interval binning
 - Equal-frequency binning
 (also called histogram equalization)

- Normally inferior to supervised schemes in classification tasks
- But equal-frequency binning works well with naïve Bayes if number of intervals is set to square root of size of dataset
 (proportional k-interval discretization)
Discretization: supervised

- **Entropy-based** method
- Build a decision tree with pre-pruning on the attribute being discretized
 - Use entropy as splitting criterion
 - Use minimum description length principle as stopping criterion
- Works well: the state of the art
- To apply MDL principle:
 - The “theory” is
 - the splitting point \((\log_2[N - 1] \text{ bits})\)
 - plus class distribution in each subset
 - Compare description lengths before/after adding splitting point
Example: temperature attribute

Given:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>64</th>
<th>65</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>75</th>
<th>75</th>
<th>80</th>
<th>81</th>
<th>83</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Collapsing repeated values:

Temperature	64	65	68	69	70	71	72	75	80	81	83	85		
Play	Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No

3 of 11 possible break points:

\[
\text{info}([[1,0],[8,5]]) = \frac{1}{14} \times \text{info}([1,0]) + \frac{13}{14} \times \text{info}([8,5]) = 0.961 \text{ bits}
\]

\[
\text{info}([[4,2],[5,3]]) = \frac{6}{14} \times \text{info}([4,2]) + \frac{8}{14} \times \text{info}([5,3]) = 0.939 \text{ bits}
\]

\[
\text{info}([[9,4],[0,1]]) = \frac{13}{14} \times \text{info}([9,4]) + \frac{1}{14} \times \text{info}([0,1]) = 0.827 \text{ bits}
\]
Example: temperature attribute

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Yes</td>
</tr>
<tr>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>68</td>
<td>Yes</td>
</tr>
<tr>
<td>69</td>
<td>Yes</td>
</tr>
<tr>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>71</td>
<td>Yes</td>
</tr>
<tr>
<td>72</td>
<td>No</td>
</tr>
<tr>
<td>72</td>
<td>Yes</td>
</tr>
<tr>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>80</td>
<td>No</td>
</tr>
<tr>
<td>81</td>
<td>Yes</td>
</tr>
<tr>
<td>83</td>
<td>Yes</td>
</tr>
<tr>
<td>85</td>
<td>No</td>
</tr>
</tbody>
</table>

Temperature values: 66.5, 70.5, 73.5, 77.5, 80.5, 84

Points on the graph correspond to these temperatures, with the play outcome represented by the graph's curve.
Formula for MDLP stopping criterion

- \(N \) instances
- Original set: \(k \) classes, entropy \(E \)
- First subset: \(k_1 \) classes, entropy \(E_1 \)
- Second subset: \(k_2 \) classes, entropy \(E_2 \)

\[
gain > \frac{\log_2(N-1)}{N} + \frac{\log_2(3^k-2) - kE + k_1 E_1 + k_2 E_2}{N}
\]

- Results in no discretization intervals for temperature attribute
Supervised discretization: other methods

- Can replace top-down (splitting) procedure by bottom-up (merging) method.
- Can replace MDLP (entropy-based) stopping criterion by (statistical) chi-squared test.
- Can use *dynamic programming* (versus exponential brute-force algorithm) to find optimum k-way split for given additive criterion:
 - Requires time quadratic in the number of instances.
 - But can be done in linear time if error rate is used instead of entropy.
Question: Could the best discretization ever have two adjacent intervals with the same class?

Wrong answer: No. For if so,
- Collapse the two
- Free up an interval
- Use it somewhere else
 - (This is what error-based discretization will do)

Right answer: Surprisingly, yes.
- (And entropy-based discretization can do it)
A 2-class, 2-attribute problem

IF \((a1 < 0.3)\) OR
\((a1 < 0.7 \text{ AND } a2 < 0.5)\)
THEN \textit{Dots}
ELSE \textit{Triangles}

Entropy-based discretization can detect change of class \textit{distribution}
The converse of discretization

- Make nominal values into “numeric” ones

1. Indicator attributes (used by IB1)
 - Makes no use of potential ordering information

2. Code an ordered nominal attribute into binary ones (used by M5’)
 - Can be used for any ordered attribute
 - Better than coding ordering into an integer (which implies a metric)

- In general: code subset of attributes as binary
In WEKA ...

Weka Explorer

Current relation
Relation: weather.symbolic
Instances: 14
Attributes: 5

Attributes
All
None
Invert

No.	Name
1 | outlook
2 | temperature
3 | humidity
4 | windy
5 | play

Selected attribute
Name: outlook
Missing: 0 (0%)
Distinct: 3
Type: Nominal
Unique: 0 (0%)

<table>
<thead>
<tr>
<th>Label</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>5</td>
</tr>
<tr>
<td>overcast</td>
<td>4</td>
</tr>
<tr>
<td>rainy</td>
<td>5</td>
</tr>
</tbody>
</table>

Class: play (Nom)

Remove

Status
OK

Log

data mining: practical machine learning tools and techniques (chapter 7)
In WEKA ...

- **Unsupervised attribute filters** (see pp. 395-396)
 - Convert numeric to nominal *(allows equal-interval vs. equal-frequency binning, plus numerous other parameters)*
 - `weka.filters.unsupervised.attribute.Discretize`
 - Replace nominal with Boolean *(1 within range, else 0)*
 - `weka.filters.unsupervised.attribute.MakeIndicator`
 - Change nominal to several binary attributes *(1 per value)*
 - `weka.filters.unsupervised.attribute.NominalToBinary`
 - Convert all numeric attributes into binary ones
 - `weka.filters.unsupervised.attribute.NumericToBinary`

More ...
In WEKA ...

- **Supervised attribute filters** (see pp. 402-403)
 - MDL-based discretization of numeric to nominal
 - `weka.filters.supervised.attribute.Discretize`
 - Convert nominal/numeric to binary
 - `weka.filters.supervised.attribute.NominalToBinary`
 - Reorder class values randomly or by class frequency
 - `weka.filters.supervised.attribute.ClassOrder`
 - Automatic attribute selection with the same functionality as Explorer's Select attributes panel
 - `weka.filters.supervised.attribute.AttributeSelection`
3. Data transformations

- Simple *transformations* can often make a large difference in performance
- Example transformations (not necessarily for performance improvement):
 - Difference of two date attributes
 - Ratio of two numeric (ratio-scale) attributes
 - Concatenating the values of nominal attributes
 - Encoding (probabilistic) cluster membership
 - Adding noise to data (for robustness tests)
 - Removing data randomly or selectively
 - Obfuscating the data (for anonymity)
Data Transformations in WEKA...
In WEKA ...

- Some unsupervised attribute filters (see pp. 395-401)
 - Insert attribute at given position
 - `weka.filters.unsupervised.attribute.Add`
 - Copies attributes to preserve them when filters overwrite attribute values
 - `weka.filters.unsupervised.attribute.Copy`
 - Delete all attributes of a given type (nominal, numeric, ...)
 - `weka.filters.unsupervised.attribute.RemoveType`
 - Apply clustering algorithm to data before filtering
 - `weka.filters.unsupervised.attribute.AddCluster`

More ...
In WEKA ...

• More unsupervised attribute filters (see pp. 395-401)
 ◦ Create new attribute by applying a mathematical function to numeric attributes
 • weka.filters.unsupervised.attribute.AddExpression
 ◦ Create new attribute by applying a given Java function to numeric attributes
 • weka.filters.unsupervised.attribute.NumericTransform
 ◦ Scale numeric values to range $[0,1]$
 • weka.filters.unsupervised.attribute.Normalize
 ◦ Transform numeric values to have zero mean and unit variance
 • weka.filters.unsupervised.attribute.Standardize
Principal component analysis

• Method for identifying the important “directions” in the data
• Can rotate data into (reduced) coordinate system that is given by those directions
• **Algorithm:**
 1. Find direction (axis) of greatest variance
 2. Find direction of greatest variance that is perpendicular to previous direction and repeat
• **Implementation:** Find *eigenvectors* of covariance matrix by diagonalization
 • Eigenvectors (sorted by eigenvalues) are the directions
Example: 10-dimensional data

<table>
<thead>
<tr>
<th>Axis</th>
<th>Variance</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.2%</td>
<td>61.2%</td>
</tr>
<tr>
<td>2</td>
<td>18.0%</td>
<td>79.2%</td>
</tr>
<tr>
<td>3</td>
<td>4.7%</td>
<td>83.9%</td>
</tr>
<tr>
<td>4</td>
<td>4.0%</td>
<td>87.9%</td>
</tr>
<tr>
<td>5</td>
<td>3.2%</td>
<td>91.1%</td>
</tr>
<tr>
<td>6</td>
<td>2.9%</td>
<td>94.0%</td>
</tr>
<tr>
<td>7</td>
<td>2.0%</td>
<td>96.0%</td>
</tr>
<tr>
<td>8</td>
<td>1.7%</td>
<td>97.7%</td>
</tr>
<tr>
<td>9</td>
<td>1.4%</td>
<td>99.1%</td>
</tr>
<tr>
<td>10</td>
<td>0.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Note: Component = axis, since each axis accounts for its share of the variance

- Can transform data into space given by principal components
- Common to standardize attributes prior to applying PCA
- Could also apply this recursively in decision tree learner
In WEKA ...

- PCA unsupervised attribute filter (see pp. 395-401)
 - Perform principal components analysis and transformation of the data (default 95% variance in original data)
 - `weka.filters.unsupervised.attribute.PrincipalComponents`
 - code based on WEKA's PCA attribute selection scheme
Random projections

- PCA is nice but expensive: cubic in number of attributes.
- **Alternative**: use random directions (projections) instead of principle components.
- Surprising: random projections preserve distance relationships quite well (on average).
 - Can use them to apply kD-trees to high-dimensional data.
 - Can improve stability by using ensemble of models based on different projections.
 - Much cheaper than PCA!
In WEKA ...

- **Randomizing** attribute filters (see pp. 396 & 400)
 - Change a given percentage of values of a nominal attribute
 - `weka.filters.unsupervised.attribute.AddNoise`
 - Rename relation, attributes, and nominal and string attribute values
 - `weka.filters.unsupervised.attribute.Obfuscate`
 - Use random matrix to project dataset to a lower-dimensional subspace
 - `weka.filters.unsupervised.attribute.RandomProjection`
Text to attribute vectors

- Many data mining applications involve textual data (e.g. string attributes in ARFF)
- Standard transformation: convert string into bag of words by tokenization
 - Attribute values are binary, term frequencies (f_{ij}), $\log(1+f_{ij})$, or TF × IDF: $f_{ij} \log \frac{\#\text{documents}}{\#\text{documents that include word } i}$
 - Only retain alphabetic sequences?
 - What should be used as delimiters?
 - Should words be converted to lowercase?
 - Should stopwords (e.g. the, and, but) be ignored?
 - Should hapax legomena be included? Or even just the k most frequent words?
In WEKA ...

- **String conversion** attribute filters (see pp. 396 & 399)
 - Convert to set number of nominal values
 - `weka.filters.unsupervised.attribute.StringToNominal`
 - Produce attributes representing word frequency in a string
 - `weka.filters.unsupervised.attribute.StringToWordVector`
Time series

- In time series data, each instance represents a different time step (e.g. weather or stock market prediction)

- Some simple transformations:
 - Shift values from the past/future
 - Compute difference (delta) between instances (i.e. “derivative”)

- In some datasets, samples are not regular but time is given by timestamp attribute
 - Need to normalize by step size when transforming

- Transformations need to be adapted if attributes represent different time steps
In WEKA ...

- **Time series** attribute filters (see pp. 396 & 399-400)
 - Replace attribute values in current instance with equivalent value in some other (previous or future) instance
 - `weka.filters.unsupervised.attribute.TimeSeriesTranslate`
 - Replace attribute values in current instance with distance between current value and the value in some other instance
 - `weka.filters.unsupervised.attribute.TimeSeriesDelta`
4. Automatic data cleansing

- What for? Poor quality of available data ...
- To improve a decision tree:
 - Remove misclassified instances, then re-learn!
- Better (of course!):
 - Human expert checks misclassified instances
- Attribute noise vs. class noise
 - Attribute noise should be left in training set
 (don’t train on clean set and test on dirty one)
 - Systematic class noise *(e.g. one class substituted for another)*: leave in training set
 - Unsystematic class noise: eliminate from training set, if possible
Data cleansing in WEKA ...

- **Unsupervised instance filters** (see pp. 400-401)
 - Remove instances incorrectly classified according to a specified classifier – useful for removing outliers
 - `weka.filters.unsupervised.instance.RemoveMisclassified`
 - Remove a given percentage of a dataset
 - `weka.filters.unsupervised.instance.RemovePercentage`
 - Remove a given range of instances
 - `weka.filters.unsupervised.instance.RemoveRange`
 - Filter out instances with certain attribute values
 - `weka.filters.unsupervised.instance.RemoveWithValues`
 - Produce random subsample of a dataset, sampling with replacement
 - `weka.filters.unsupervised.instance.Resample`
Robust regression

- “Robust” statistical method ⇒ one that addresses problem of outliers

- To make regression more robust:
 - Minimize absolute error, not squared error
 - Remove outliers (e.g. 10% of points farthest from the regression plane)
 - Minimize median instead of mean of squares (copes with outliers in x and y direction)
 - Finds narrowest strip covering half the observations
Example: least median of squares

Number of international phone calls from Belgium, 1950–1973

Data entry error

PRO: unperturbed by anomalous data
CON: high computational cost
Detecting anomalies

- Visualization can help to detect anomalies
- "Automatic" approach: *committee* of different learning schemes to filter the data
 - *E.g.* Committee consisting of a
 - decision tree
 - nearest-neighbor learner
 - linear discriminant function
 - Conservative approach: delete instances incorrectly classified by them all
 - **Problem:** might sacrifice instances of small classes
 - **Better:** Human inspection of instances identified by the filter as suspect.
5. Combining multiple models

• Basic idea:
 build different “experts”, let them vote

• Advantage:
 ♦ often improves predictive performance

• Disadvantage:
 ♦ usually produces output that is very hard to analyze
 ♦ but: there are approaches that aim to produce a single comprehensible structure
Bagging

- Combining predictions by voting/averaging
 - Simplest way
 - Each model receives equal weight
- "Idealized" version of bootstrap aggregating:
 - **Bootstrap**: Sample (with replacement) several training sets of size \(n \) (instead of just having one training set of size \(n \))
 - **Aggregation**: Combine the classifiers’ predictions
- Learning scheme is **unstable** \(\Rightarrow \) almost always improves performance
- Small change in training data can make big change in model (e.g. decision trees)

Breiman (1996)
Bias-variance decomposition

- Used to analyze how much selection of any specific training set affects performance
- Assume infinitely many classifiers, built from different training sets of size n
- For any learning scheme,
 - $Bias = \text{expected error of the combined classifier on new data}$
 - $Variance = \text{expected error due to the particular training set used}$
- Total expected error $\approx bias + variance$
More on bagging

- Bagging works because it reduces variance by voting/averaging
 - Note: in some pathological hypothetical situations the overall error might increase
 - Usually, the more classifiers the better
- Problem: we only have one dataset!
- Solution: generate new ones of size n by sampling from it with replacement
- Can help a lot if data is noisy
- Can also be applied to numeric prediction
 - Aside: bias-variance decomposition originally only known for numeric prediction
Model generation

Let n be the number of instances in the training data
For each of t iterations:

- Sample n instances from training set (with replacement)
- Apply learning algorithm to the sample
- Store resulting model

Classification

For each of the t models:

- Predict class of instance using model
Return class that is predicted most often
Bagging with costs

- Bagging *unpruned* decision trees known to produce good probability estimates
 - Where, instead of voting, the individual classifiers' probability estimates are averaged
 - Note: this can also improve the success rate
- Can use this with minimum-expected cost approach for learning problems with costs
- Problem: not interpretable
 - *MetaCost* re-labels training data using bagging with costs and then builds single tree
Bagging in WEKA ...

- Choose Bagging
- Test options:
 - Cross-validation: Folds = 10
- Classifier output:
 - weka.classifiers.meta.Bagging
 - About:
 - Class for bagging a classifier to reduce variance.
 - bagSizePercent = 100
 - calcOutOfBag = False
 - classifier = Choose REPTree
 - debug = False
 - numIterations = 10
 - seed = 1
Bagging in WEKA ...

- **Metalearning algorithms for Bagging** *(see pp. 414-415)*
 - Bag a classifier; works for regression, too
 - `weka.classifiers.meta.Bagging`
 - Make base classifier cost-sensitive
 - `weka.classifiers.meta.CostSensitiveClassifier`
 - Make a classifier cost-sensitive via Domingos (1999)
 - `weka.classifiers.meta.MetaCost`
Randomization I

- Can randomize learning algorithm instead of input
- Some algorithms already have a random component: *e.g.* initial weights in neural net/MLP
- Most algorithms can be randomized, *e.g.* greedy algorithms:
 - Pick from the N best options at random instead of always picking the best options
 - *E.g.*: attribute selection in decision trees

Dietterich (2000)
Randomization II

- Randomization can be combined with bagging
 - *E.g.* learning random forests by building a randomized decision tree in each iteration of the bagging algorithm

- Unlike bagging, randomization can be applied to stable learners
 - randomize to make classifiers diverse
 - *E.g.* Nearest-neighbor classifiers can be randomized by using different, randomly chosen subsets of attributes
Randomization in WEKA ...

The image shows the WEKA Explorer interface with a classifier setup. The classifier chosen is a Random Committee, with the command line arguments specified as:

```
Choose RandomCommittee -S 1 -I 10 -W weka.classifiers.trees.RandomTree -- -K 1 -M 1.0 -S 1
```

The classifier output includes metrics such as:
- Correctly Classified Instances: 142 (94.1%)
- Incorrectly Classified Instances: 8 (5.9%)
- Kappa statistic: 0.92
- Mean absolute error: 0.052
- Root mean squared error: 0.1704
- Relative absolute error: 11.7%
Randomization in WEKA ...

- Metalearning algos for randomization (see pp. 414-415)
 - Build an ensemble of randomizable base classifiers
 - `weka.classifiers.meta.RandomCommittee`
Boosting

- Also uses voting (classification) or averaging (numeric prediction)
- But: weights models according to performance
- Also: Iterative - new models are influenced by performance of previously built ones
 - Encourage new model to become an “expert” for instances misclassified by earlier models
 - Intuitive justification: models should be experts that complement each other
AdaBoost.M1 (for classification)

Freund & Schapire (1996)

Model generation

Assign equal weight to each training instance
For \(t \) iterations:
- Apply learning algorithm to weighted dataset,
- store resulting model
- Compute model’s error \(e \) on weighted dataset
- If \(e = 0 \) or \(e \geq 0.5 \):
 - Terminate model generation
- For each instance in dataset:
 - If classified correctly by model:
 - Multiply instance’s weight by \(e/(1-e) \)
- Normalize weight of all instances

Classification

Assign weight = 0 to all classes
For each of the \(t \) models (or fewer):
- For the class this model predicts
 - add \(-\log e/(1-e)\) to this class’s weight
Return class with highest weight
More on boosting I

- Boosting needs weights ... but
 - can adapt learning algorithm ... or
 - can apply boosting *without* weights
 - resample with probability determined by weights
 - disadvantage: not all instances are used
 - advantage: if error > 0.5, can resample again

- Idea of boosting stems from *computational learning theory*
 - Theoretical result:
 - training error decreases exponentially
 - Also:
 - works if base classifiers are not too complex, and
 - their error does not become too large too quickly
More on boosting II

- Continue boosting after training error = 0?
- Puzzling fact: generalization error continues to decrease!
 - Seems to contradict Occam’s Razor
- Explanation: consider margin (confidence), not error
 - Difference between estimated probability for true class and nearest other class (between –1 and 1)
- Boosting works with weak (simple) learners only condition: error does not exceed 0.5
- In practice, boosting sometimes overfits (in contrast to bagging) = less accurate than single classifier
Boosting in WEKA ...

In WEKA, boosting can be performed using the `AdaBoostM1` classifier. To use it, select `AdaBoostM1` from the classifier menu and set the parameters accordingly. For example, you can use the following command:

```
Choose AdaBoostM1 -P 100 -S 1 -L 10 -N weka.classifiers.trees.DecisionStump
```

This command sets the number of boosts to 100, the learning rate to 0.1, and uses a decision stump as the base classifier. The classifier output shows the performance metrics:

- Correctly Classified Instances: 143 / 148
- Incorrectly Classified Instances: 7 / 148
- Kappa statistic: 0.93
- Mean absolute error: 0.069

These metrics indicate the effectiveness of the boosting process in classifying the data accurately.
• Metalearning algos for boosting (see pp. 415-416)
 ♦ Boost using the AdaBoost.M1 method
 • weka.classifiers.meta $\texttt{AdaBoostM1}$
 ♦ Combine boosting with a variant of bagging to prevent overfitting
 • weka.classifiers.meta $\texttt{MultiBoostAB}$
 ♦ Build ensembles of diverse classifiers by using specially constructed artificial training examples
 • weka.classifiers.meta $\texttt{Decorate}$
Additive regression I

• Turns out that boosting is a greedy algorithm for fitting \textit{additive models}.

• More specifically, boosting implements \textit{forward stagewise additive modeling}.

• Same kind of algorithm for numeric prediction:
 1. Build standard regression model (\textit{e.g.} regression tree).
 2. Gather residuals, learn model predicting residuals (\textit{e.g.} regression tree), and repeat.

• To predict, simply sum up individual predictions from all models.

\textit{Note: Residuals} are the differences between predicted and observed values.
Additive regression II

- Minimizes squared error of *ensemble* if base learner minimizes squared error of predictions
 - Note: Does not make sense to use standard linear regression as a base learner
 - Can use it with *simple* (single attribute) linear regression to build multiple linear regression model
- Stopping criteria: Use cross-validation to avoid overfitting ...
Additive logistic regression

- Can use the logit transformation to get algorithm for classification
 - More precisely, class probability estimation
 - Probability estimation problem is transformed into regression problem
 - Regression scheme is used as base learner (e.g. regression tree learner)

- Can use forward stagewise algorithm: at each stage, add model that maximizes probability of data

- If f_j is the jth regression model, the ensemble predicts probability
 \[
 p(1 | \vec{a}) = \frac{1}{1 + \exp(-\sum f_j(\vec{a}))}
 \]
 for the first class

Note: \vec{a} is the attribute vector for an instance.
LogitBoost (for 2-class problems)

Model generation

For $j = 1$ to t iterations:
For each instance $a[i]$:
 Set the target value for the regression to
 $$z[i] = \frac{(y[i] - p(1|a[i]))}{p(1|a[i]) \times (1-p(1|a[i]))}$$
 Set the weight of instance $a[i]$ to $p(1|a[i]) \times (1-p(1|a[i]))$
 Fit a regression model $f[j]$ to the data with class values $z[i]$ and weights $w[i]$

Classification

Predict 1^{st} class if $p(1 \mid a) > 0.5$, otherwise predict 2^{nd} class

- Maximizes probability if base learner minimizes squared error
- Difference to AdaBoost: optimizes probability/likelihood instead of exponential loss; uses regression method as base
- Can be adapted to multi-class problems
- Shrinking and cross-validation-based selection apply
Option trees

- **Issue:** *Ensembles* are not interpretable
- **Can we generate a single model?**
 - One possibility: “cloning” the ensemble by using lots of artificial data that is labeled by ensemble
 - Another possibility: generating a single structure that represents ensemble in compact fashion
- **Option tree:** decision tree with option nodes
 - Idea: follow all possible branches at option node
 - Predictions from different branches are merged using voting or by averaging probability estimates

Kohavi & Kunz (1997)
Example

- Can be learned by modifying tree learner:
 - Create option node if there are several equally promising splits (within user-specified interval)
 - When pruning, error at option node is average error of options
Alternating decision trees

- Can also grow option tree by incrementally adding nodes to it via a boosting algorithm
- Structure called *alternating decision tree*, with *splitter nodes* and *prediction nodes*
 - Prediction nodes are leaves if no splitter nodes have been added to them yet
 - Standard alternating tree applies to 2-class problems
 - To obtain prediction, filter instance down all applicable branches and sum predictions
 - Predict one class or the other depending on whether the sum is positive or negative
Consider the following instance:
outlook=sunny
temperature=hot
humidity=normal
windy=false

Note: + means play=no
- means play=yes
Growing alternating trees

- Tree is grown using a boosting algorithm
 - *E.g.* LogitBoost described earlier
 - Assume that base learner produces single conjunctive rule in each boosting iteration (note: rule for regression)
 - Each rule could simply be added into the tree, including the numeric prediction obtained from the rule
 - Problem: tree would grow very large very quickly
 - Solution: base learner should only consider candidate rules that extend existing branches
 - Extension adds splitter node and two prediction nodes (assuming binary splits)
 - Standard algorithm chooses best extension among all possible extensions applicable to tree
 - More efficient heuristics can be employed instead
Logistic model trees

- Option trees may still be difficult to interpret
- Can also use boosting to build decision trees with linear models at the leaves (ie. trees without options)
- Algorithm for building *logistic model trees*:
 1. Run *LogitBoost* with simple linear regression as base learner (choosing the best attribute in each iteration)
 2. Interrupt boosting when cross-validated performance of additive model no longer increases
 3. Split data (e.g. as in *C4.5*) and resume boosting in subsets of data
 4. Prune tree using cross-validation-based pruning strategy (from *CART* tree learner)

Landwehr et al. (2003)
More boosting in WEKA ...

[Image of WEKA Explorer interface with the following settings:
- Classifier: AdditiveRegression -S 1.0 -I 10 -W weka.classifiers.trees.DecisionStump
- Test options:
 - Cross-validation
- Classifier output:
 - Model number 9
 - Decision Stump
 - Classifications
- Result list:
 - 20:21:36 - meta.Bagging
 - 20:21:55 - trees.REPTree
 - 20:37:24 - meta.MetaCost
 - 20:49:05 - meta.RandomCommittee
 - 23:10:09 - meta.AdaBoostM1
 - 00:56:48 - meta.AdditiveRegression
 - 00:57:10 - meta.AdditiveRegression
- Status: OK]
• Add'l. Metalearning algos for boosting (see pp. 415-416)
 ◇ Enhance performance of regression method by iteratively fitting the residuals
 • `weka.classifiers.meta.AdditiveRegression`
 ◇ Perform additive logistic regression
 • `weka.classifiers.meta.LogitBoost`
 ◇ Batch-based incremental learning by racing logit-boosted committees
 • `weka.classifiers.meta.RacedIncrementalLogitBoost`
Stacking

- To combine predictions of base learners, don’t vote, use *meta learner*
 - Base learners: *level-0 models*
 - Meta learner: *level-1 model*
 - Predictions of base learners are input to meta learner

- Base learners are usually different schemes
- Can’t use predictions on training data to generate data for level-1 model!
 - Instead use cross-validation-like scheme
- Hard to analyze theoretically: “black magic”
More on stacking

- If base learners can output probabilities, use those as input to meta learner instead
- Which algorithm to use for meta learner?
 - In principle, any learning scheme
 - Prefer “relatively global, smooth” model
 - Base learners do most of the work
 - Reduces risk of overfitting
- Stacking can be applied to numeric prediction too
ECOC: Error-correcting output codes

- Multiclass problem \Rightarrow binary problems
- Simple scheme:
 One-per-class coding
- Idea: use *error-correcting codes* instead
- base classifiers predict
 1011111, true class = ??
- Use code words that have large *Hamming distance* between any pair
- Can correct up to $(d - 1)/2$ single-bit errors

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>b</td>
<td>0100</td>
</tr>
<tr>
<td>c</td>
<td>0010</td>
</tr>
<tr>
<td>d</td>
<td>0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1111111</td>
</tr>
<tr>
<td>b</td>
<td>0000111</td>
</tr>
<tr>
<td>c</td>
<td>0011001</td>
</tr>
<tr>
<td>d</td>
<td>0101010</td>
</tr>
</tbody>
</table>
More on ECOCs

- Two criteria:
 - *Row separation*: minimum distance between rows
 - *Column separation*: minimum distance between columns
 - (and columns’ complements)
 - Why? Because if columns are identical, base classifiers will likely make the same errors
 - Error-correction is weakened if errors are correlated

- 3 classes \Rightarrow only 2^3 possible columns
 - (and 4 out of the 8 are complements)
 - Cannot achieve row and column separation
- Only works for problems with > 3 classes
Exhaustive ECOCs

- **Exhaustive code for** k **classes:**
 - Columns comprise every possible k-string ...
 - ... except for complements and all-zero/one strings
 - Each code word contains $2^{k-1} - 1$ bits
 - Class 1: code word is all ones
 - Class 2: 2^{k-2} zeroes followed by $2^{k-2} - 1$ ones
 - Class i : alternating runs of 2^{k-i} 0s and 1s
 - last run is one short

Exhaustive code, $k = 4$

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1111111</td>
</tr>
<tr>
<td>b</td>
<td>0000111</td>
</tr>
<tr>
<td>c</td>
<td>0011001</td>
</tr>
<tr>
<td>d</td>
<td>0101010</td>
</tr>
</tbody>
</table>
More on ECOCs

- More classes \Rightarrow exhaustive codes infeasible
 - Number of columns increases exponentially
- Random code words have good error-correcting properties on average!
- There are sophisticated methods for generating ECOCs with just a few columns
- ECOCs don’t work with NN classifier
 - But: works if different attribute subsets are used to predict each output bit
Stacking in WEKA ...
Stacking in WEKA ...

- **Metalearning algos for stacking** (see pp. 415-416)
 - Combine several classifiers via stacking
 - `weka.classifiers.meta.Stacking`
 - More efficient version of stacking
 - `weka.classifiers.meta.StackingC`
 - Metalearners whose inputs are base-level predictions marked as correct or incorrect
 - `weka.classifiers.meta.Grading`
6. Using unlabeled data

- **Semisupervised learning**: attempts to use unlabeled data as well as labeled data
 - The aim is to improve classification performance
- Why try to do this? Unlabeled data is often plentiful and labeling data can be expensive
 - Web mining: classifying web pages
 - Text mining: identifying names in text
 - Video mining: classifying people in the news
- Leveraging the large pool of unlabeled examples would be very attractive
Clustering for classification

- Idea: use naïve Bayes on labeled examples and then apply EM
 - First, build naïve Bayes model on labeled data
 - Second, label unlabeled data based on class probabilities ("expectation" step)
 - Third, train new naïve Bayes model based on all the data ("maximization" step)
 - Fourth, repeat 2nd and 3rd step until convergence

- Essentially the same as EM for clustering with fixed cluster membership probabilities for labeled data and \#clusters = \#classes
Comments

- Has been applied successfully to document classification
 - Certain phrases are indicative of classes
 - Some of these phrases occur only in the unlabeled data, some in both sets
 - EM can generalize the model by taking advantage of co-occurrence of these phrases
- Refinement 1: reduce weight of unlabeled data
- Refinement 2: allow multiple clusters per class
Co-training

- Method for learning from *multiple views* (multiple sets of attributes), *e.g.*:
 - First set of attributes describes content of web page
 - Second set of attributes describes links that link to the web page
- Step 1: build model from each view
- Step 2: use models to assign labels to unlabeled data
- Step 3: select those unlabeled examples that were most confidently predicted (ideally, preserving ratio of classes)
- Step 4: add those examples to the training set
- Step 5: go to Step 1 until data exhausted
- Assumption: views are independent
EM and co-training

- Like EM for semisupervised learning, but view is switched in each iteration of EM
 - Uses all the unlabeled data (probabilistically labeled) for training
- Has also been used successfully with support vector machines
 - Using logistic models fit to output of SVMs
- Co-training also seems to work when views are chosen randomly!
 - Why? Possibly because co-trained classifier is more robust