Definition

A PDA, \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \), is a 7-tuple consisting of
- a finite set of states, denoted \(Q \)
- a finite set of input symbols, denoted \(\Sigma \)
- a finite stack alphabet, denoted \(\Gamma \)
- a transition function, \(\delta: Q \times \Sigma \times \{\varepsilon}\times \Gamma \rightarrow Q \times \Gamma^* \)
- the start state \(q_0 \in Q \)
- the start symbol \(Z_0 \in \Gamma \),
- a set of final states \(F \subseteq Q \)

Informal Introduction

The pushdown automaton (PDA) is essentially an \(\varepsilon \)-NFA with a stack.

For the transition function, \(\delta: Q \times \Sigma \times \{\varepsilon\} \times \Gamma \rightarrow Q \times \Gamma^* \)
- Informally, for \(q \in Q \), \(a \in \Sigma \), and \(X \in \Gamma \),
 \(\delta(q, a, X) = (p, \gamma) \) where
 - \(p \in Q \) is the next state; and
 - \(\gamma \in \Gamma^* \) is the string of stack symbols that replaces \(X \) at the top of the stack.
 - If \(\gamma = \varepsilon \), then the stack is popped.
 - If \(\gamma = X \), then the stack is unchanged.
 - If \(\gamma = YZ \), then \(X \) is replaced by \(Z \), and \(Y \) is pushed onto the stack.
Definition

Example

The CFL \(L = \{ w w^R \mid w \in (0+1)^* \} \) is represented by the following PDA:

![Diagram of PDA]

Instantaneous Descriptions

The configuration of a PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) is a triple \((q, w, \gamma) \), where:

- \(q \in Q \) is the (current) state;
- \(w \in \Sigma^* \) is the remaining output; and
- \(\gamma \in \Gamma^* \) is the stack contents. (By convention, the top of the stack is at the left end of \(\gamma \) and the bottom at the right end.)

Such a triple is called an instantaneous description, or ID, of the PDA, \(P \).

Moves of a PDA

The “turnstile” notation for connecting pairs of IDs that represent one or many moves of a PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) is denoted by \(\vdash \), or just \(\vdash \) when \(P \) is understood.

Suppose \(\delta(q, a, X) = (p, \alpha) \). Then, for all strings \(w \in \Sigma^* \) and \(\beta \in \Gamma^* \):

\[(q, aw, X\beta) \vdash (p, w, \alpha\beta)\]

So, by consuming \(a \) (which may be \(\varepsilon \)) from the input and replacing \(X \) on the top of the stack with \(\alpha \), we can go from state \(q \) to state \(p \).

Moves of a PDA

The symbol \(\vdash^* \), or just \(\vdash \) when \(P \) is understood, is used to denote zero or more moves of the PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \).

That is,

- \(I \vdash^* I \), for any ID \(I \).
- \(I \vdash^* J \), if there exists some ID \(K \) such that \(I \vdash K \) and \(K \vdash J \). So, \(I \vdash J \) if there is a sequence of one IDs \(K_1, K_2, \ldots, K_n \) such that \(I = K_1 \), \(J = K_n \), and for all \(1 \leq i \leq n-1 \), we have \(K_i \vdash K_{i+1} \).
PDA IDs and Moves

Three important principles about IDs and moves:

1. If a sequence of IDs (computation) is legal for a PDA P, then the computation formed by adding the same additional input string to the end of the input (second component) in each ID is also legal.

2. If a computation is legal for a PDA P, then the computation formed by adding the same additional stack symbols below the stack in each ID is also legal.

3. Theorem 6.5

If $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a PDA, and $(q, x, \alpha) \xrightarrow{\tau} (p, y, \beta)$, then for any strings $w \in \Sigma^*$ and $\gamma \in \Gamma^*$, it is also true that

$$(q, xw, \alpha \gamma) \xrightarrow{\tau} (p, yw, \beta \gamma).$$

PDA Languages

Given a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$.

- P accepts an input string $w \in \Sigma^*$ if $(q_0, w, Z_0) \xrightarrow{\tau} (p, \varepsilon, \varepsilon)$ for any final state $p \in F$ and any stack string $\gamma \in \Gamma^*$. This approach is known as “acceptance by final state” and the set of strings accepted this way is denoted $L(P)$.

- P accepts an input string $w \in \Sigma^*$ if $(q_0, w, Z_0) \xrightarrow{\tau} (q, \varepsilon, \varepsilon)$ for any state $q \in Q$. This approach is also known as “acceptance by empty stack” and the set of strings accepted this way is denoted $N(P)$.
PDA Languages

Theorem 6.9 (From Empty Stack to Final State)

If \(L = N(P_N) \) for some PDA \(P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, F) \), then there is a PDA \(P_F \) such that \(L = L(P_F) \).

(Constructive) Proof:

1. Construct a PDA \(P_F \) as follows:
 - Introduce new start state \(p_0 \) and new bottom-of-stack marker \(X_0 \).
 - First move of \(P_F \): \(\delta_F(p_0, \varepsilon, X_0) = (q_0, Z_0 X_0) \).
 - Then, \(P_F \) simulates \(P_N \); i.e., give \(P_F \) all the transitions of \(P_N \).

2. Introduce a new final state \(p_f \) for \(P_F \).
3. For every state \(q \in Q \), \(\delta_F(q, \varepsilon, X_0) = (p_f, \varepsilon) \).

Does this really work? For \(w \in Q^* \) where \(w \in N(P_N) \):

\[
(\rho_0, w, X_0) \xrightarrow{\delta_N} (q_0, w, Z_0 X_0) \xrightarrow{\rho_0} (q, \varepsilon, X_0) \xrightarrow{\delta_F} (p_f, \varepsilon, \varepsilon)
\]

So, \(P_F \) accepts \(w \) by final state.

Example

Consider the following PDA, \(P_N = (Q = \{ q \}, \Sigma = \{ i, e \}, \Gamma = \{ Z \}, \delta_N, q, Z, F = \{ q \}) \), which processes sequences of \(\pm \)’s (denoted \(i \)) and \(\pm \)’s (denoted \(e \)) in a C program:

Notice that accepts/recognizes if/else errors by the empty stack.
PDA Languages

Theorem 6.9 *(From Empty Stack to Final State)*

Example, continued

- Construct from P_F a PDA P_N that accepts the same language by *final state*.

- Hence, $P_F = (\{q\}, N(p_0 = p, p_f = r), \Sigma = \{i, e\}, \{Z\} N(X_0), \delta_F, p_0 = p, X_0 \{p = r\})$.

Theorem 6.11 *(From Final State to Empty Stack)*

(Constructive) Proof:

- Given $L = L(P_F)$ for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, then there is a PDA P_N such that $L = N(P_N)$.

- Construction of PDA P_N...

- For every state $q \in F$ and any stack symbol $Y \in \Gamma$, $\delta_F(q, e, Y) = (p, e)$.

- For any stack symbol $Y \in \Gamma$, add the transition $\delta_F(p, e, Y) = (p, e)$ to use state p as an auxiliary to keep popping the stack of P_N until it is empty.

- For $w \in Q^*$ where $w \in L(P_F)$ and $q \in F$:

 $(p_0, w, X_0) \rightarrow^* (q_0, w, Z_0, X_0) \rightarrow^* (q, e, X_0) \rightarrow^* (p, e, \epsilon)$.

- So, P_N accepts w by empty stack.
Equivalence of PDAs & CFGs

The following three classes of languages:

- CFLs; i.e. languages defined by CFGs
- Languages accepted by final state by some PDA
- Languages accepted by empty stack by some PDA

are all the same class!

We’ve shown these through Theorems 6.9 and 6.11

From CFGs to PDAs

Let \(L = L(G) \) for some CFG \(G = (V, T, P, S) \).

Idea: Have PDA \(A \) simulate leftmost derivations in \(G \), where a left-sentential form is represented by

- the sequence of input symbols that \(A \) has consumed from its input, followed by
- \(A \)’s stack top

Example: If \((q,abcd,S)\) \(\vdash\) \((q,cd,ABC)\), then the left-sentential form represented is \(abABC \).
Equivalence of PDAs & CFGs

From CFGs to PDAs, continued:

Example:

Then, PDA \(M = (\{q\}, \{0,1\}, \{0,1,A,S\}, \delta, q, S, \emptyset) \), where \(\delta \) is defined by

\[
\begin{align*}
\delta(q, \varepsilon, S) &= \{(q, AS), (q, \varepsilon)\} \\
\delta(q, \varepsilon, A) &= \{(q, 0A1), (q, A1), (q, 01)\} \\
\delta(q, 0, 0) &= \{(q, \varepsilon)\} \\
\delta(q, 1, 1) &= \{(q, \varepsilon)\}
\end{align*}
\]

Theorem 6.13

If PDA \(P \) is constructed from CFG \(G \) by the construction above, then \(N(P) = L(G) \).

Proof:

By induction on the number of steps in the derivation \(S \Rightarrow^* \alpha \) that for any \(x, (q, wx, S) \overset{\text{fin}}{\Rightarrow} (q, x, \beta) \), where

\[
\begin{align*}
\text{if } \beta = \alpha & \quad \text{then } \beta \text{ is the suffix of } \alpha \text{ that begins at the leftmost variable (if there is no variable)} \\
\text{if } \beta \neq \alpha & \quad \text{then } \beta \text{ is the suffix of } \alpha \text{ that begins at the leftmost variable (if there is no variable)}
\end{align*}
\]

Proof detail in textbook ...

Equivalence of PDAs & CFGs

From PDAs to CFGs

Let \(L = N(P) \) for some PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \).

Idea: Units of PDA action have the net effect of popping one symbol from the stack, consuming some input, and making a state change.

For \(q, p \in Q \) and \(X \in \Gamma \), the composite symbol \([qXp] \) is a single CFG variable that generates exactly those strings \(w \) such that \(P \) can read \(w \) from the input, pop \(X \) (net effect), and go from state \(q \) to state \(p \).

Theorem 6.14

Let \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) be a PDA. Then, there is a CFG \(G \) such that \(L(G) = N(P) \).

(Constructive) Proof

Construct CFG \(G = (V, \Sigma, P, S) \) where

\[
\begin{align*}
V & \text{ consists of} \\
& \quad \text{A the start symbol, } S, \text{ and} \\
& \quad \text{A all symbols of the form } [qXp], \text{ where } q, p \in Q \text{ and } X \in \Gamma
\end{align*}
\]
Equivalence of PDAs & CFGs

(Constructive) Proof continued:

- P consists of
 - $S \rightarrow [q_0Z_0p]$, for all states $p \in Q$.
 - Let $(r, Y_1Y_2w Y_k) \in \delta(q,a,X)$, where
 - $a \in \Sigma \cup \{\varepsilon\}$
 - k can be any number, including 0, in which case $(r, Y_1Y_2w Y_k) = (r, \varepsilon)$

Then for all $r_1, r_2, w, r_k \in Q$, G has the production

$[qX] \rightarrow a[rY_1][r_1Y_2][w[r_1Y_2][r_1][r_1][r_1]]$

Hence, productions in P could be of the form

- popping rule, $[qZp] \rightarrow a$, whenever $(p, \varepsilon) \in \delta(q,a,Z)$;
- one stack symbol, one state replacement rule, $[qZr] \rightarrow a[pYr]$, for all $r \in Q$, whenever $(p, Y) \in \delta(q,a,Z)$; or
- one stack symbol replaced by two rule, $[qZs] \rightarrow a[pXr][rYs]$, for all $r, s \in Q$, whenever $(p, XY) \in \delta(q,a,Z)$.

From PDAs to CFGs, continued:

So, the essence of the Theorem is

$qX \Rightarrow w$ if and only if $(q, w, X) \vdash (p, \varepsilon, \varepsilon)$

Show the above holds by induction

- (If) on number of moves made by PDA
- (Only-if) on number of steps in the derivation

Proof detail in textbook ...

Example: Recall the PDA, $P_N = (Q=\{q\}, \Sigma=\{i, e\}, \Gamma=\{Z\}, \delta_N, q, Z, F=\emptyset)$, which processes sequences of i’s (denoted i) and e’s (denoted e) in a C program:

```
Start
q
```

and accepts/recognizes if/else errors by the empty stack.
Equivalence of PDAs & CFGs

From PDAs to CFGs, continued:

Construct CFG $G = (V, \Sigma, P, S)$ where

- V consists of:
 - the start symbol, S, and
 - $[qZq]$, the only composite symbol

- P consists of:
 - $S \rightarrow [qZq]$
 - $[qZq] \rightarrow i[qZq][qZq]$, since $(q.ZZ) \in \delta_{\delta}(q,i.Z)$
 - $[qZq] \rightarrow \varepsilon$, since $(q.i) \in \delta_{\delta}(q,i.Z)$

Hence, replacing the composite symbol $[qZq]$ by A, the CFG G has the productions:

$S \rightarrow A$
$A \rightarrow iAA | \varepsilon$

Furthermore, CFG G can be simply written as:

$G = (\{S\}, \{i,\varepsilon\}, \{S \rightarrow iSS | \varepsilon\}, S)$

Deterministic PDAs

A PDA, $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, is a deterministic PDA or DPDA if and only if the following conditions are met:

- $|\delta(q,a,X)| \leq 1$ for any state $q \in Q$, input symbol $a \in \Sigma \cup \{\varepsilon\}$, and stack symbol $X \in \Gamma$.
- If $\delta(q,a,X) \neq \emptyset$ for some $a \in \Sigma$, then $\delta(q,\varepsilon,X) = \emptyset$.

Note: Parsers are DPDAs ...

From Figure 6.11 of UATLC, Hopcroft, Motwani, & Ullman, 2001.
Deterministic PDAs

- Regular Languages and DPDAs
 - The DPDAs accept a class of languages that is between the RLs and the CFLs.
- Theorem 6.17
 - If \(L \) is RL, then \(L = L(P) \) for some DPDA \(P \).
- Proof:
 - Let \(A = (Q, \Sigma, \delta_A, q_0, F) \) be a DFA.
 - Construct DPDA \(P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F) \) by defining \(\delta_P(q, a, Z_0) = \{(p, Z_0)\} \) for all states \(p, q \in Q \) such that \(\delta_A(q, a) = p \).

Deterministic PDAs

- A language \(L \) is said to have the *prefix property* if there are no two different strings \(x \) and \(y \) in \(L \) such that \(x \) is a prefix of \(y \).
- Theorem 6.19
 - A language \(L \) is \(N(P) \) for some DPDA \(P \) if and only if \(L \) has the prefix property and \(L = L(P') \) for some DPDA \(P' \).

Equivalence of PDAs & CFGs

- Alternate construction, CFG → PDA
 - Idea: Instead of constructing a PDA with only one state (as in our textbook), create extra temporary states to push additional symbols into the stack. (This models production rules that have a body with more than one symbol.)
 - Given CFG \(G = (V, \Sigma, P, S) \).
 - Construct PDA \(P = (Q, \Sigma, \{V \Sigma \}, \delta, q_s, Z_0, \{q_f\}) \) such that \(Q \) contains start state \(q_s \), final state \(q_f \) and other states to be defined next ...

Deterministic PDAs and CFLs

- The languages accepted by DPDAs by final state properly include the regular languages, but are properly included in the CFLs.

Deterministic PDAs and Ambiguous Grammars

- Theorem 6.20
 - If \(L = N(P) \) for some DPDA \(P \), then \(L \) has an unambiguous CFG \(G \).
- Theorem 6.21
 - If \(L = L(P) \) for some DPDA \(P \), then \(L \) has an unambiguous CFG \(G \).
Equivalence of PDAs & CFGs

Alternate construction, continued:

P’s transition function, \(\delta \), contains:

\[
\delta(q_s, \varepsilon, \varepsilon) = \{(q_f, S)\}
\]

\[
\delta(q_f, a, a) = \{(q_f, \varepsilon)\}, \text{ for all } a \in \Sigma
\]

For every rule \(r_i = (A \rightarrow w_1 w_2 w_k) \) in \(P \), where each \(w_j \in VN \Sigma, 1 \leq j \leq k \), create \(k-1 \) new states \(q_{i,1}, q_{i,2}, \ldots, q_{i,k-1} \)...

Equivalence of PDAs & CFGs

Alternate construction, continued:

Example: Consider CFG \(G = (\{S\}, \{a,b\}, P, S) \), where \(P \) contains \(S \rightarrow aS | aSbS | \varepsilon \).

By the construction in our textbook:

- PDA \(P_1 = (\{q\}, \{a,b\}, \{S,a,b\}, \delta, q, S, \emptyset) \) where
 - \(\delta(q, a, S) = \{(q, aS), (q, aSbS), (q, \varepsilon)\} \)
 - \(\delta(q, a, a) = \{(q, \varepsilon)\} \)
 - \(\delta(q, b, b) = \{(q, \varepsilon)\} \)
- Note that \(L(G) = N(P_1) \).
Equivalence of PDAs & CFGs

Alternate construction, continued:

By alternate construction:

Initially, PDA $P_2 = (\{q_s, q_f\}, \{a, b\}, \{S, a, b\}, \delta, q_s, \varepsilon, \{q_f\})$

\[
\delta(q_s, \varepsilon, \varepsilon) = \{(q_f, S)\}
\]

\[
\delta(q_f, a, a) = \{(q_f, \varepsilon)\}
\]

\[
\delta(q_f, b, b) = \{(q_f, \varepsilon)\}
\]

Alternate construction, continued:

By alternate construction:

For rule $r_1 = (S \rightarrow aS)$ in P:

- Create $k-1=1$ new state, $q_{1,1}$.
- Add the following into δ:
 - $\delta(q_f, \varepsilon, S) \ni (q_{1,1}, S)$
 - $\delta(q_{1,1}, \varepsilon, \varepsilon) = \{(q_f, a)\}$

Alternate construction, continued:

By alternate construction:

For rule $r_2 = (S \rightarrow aSB)$ in P:

- Create $k-1=3$ new states, $q_{2,1}$, $q_{2,2}$, $q_{2,3}$.
- Add the following into δ:
 - $\delta(q_f, \varepsilon, S) \ni (q_{2,1}, S)$
 - $\delta(q_{2,1}, \varepsilon, \varepsilon) = \{(q_{2,2}, b)\}$
 - $\delta(q_{2,2}, \varepsilon, \varepsilon) = \{(q_{2,3}, S)\}$
 - $\delta(q_{2,3}, \varepsilon, \varepsilon) = \{(q_f, a)\}$

Alternate construction, continued:

By alternate construction:

For rule $r_3 = (S \rightarrow \varepsilon)$ in P:

- No new states to add!
- Add the following into δ:
 - $\delta(q_f, \varepsilon, S) \ni (q_f, \varepsilon)$
Equivalence of PDAs & CFGs

Alternate construction, continued.

By alternate construction:

The transition diagram for PDA \(P_2 \) is

Note that \(L(G) = L(P_2) \).