The Pumping Lemma for RLs

Theorem 4.1
(The pumping lemma for regular languages.)
Let L be a regular language. Then there exists a constant n (which depends on L) such that for every string $w \in L$ such that $|w| \geq n$, $w = xyz$, such that:

1. $y \neq \epsilon$
2. $|xy| \leq n$
3. for all $k \geq 0$, $xy^kz \in L$

Proof:

Since $|Q| = n$, by the pigeonhole principle, one cannot find $n+1$ different p_i's for $0 \leq i \leq n$ to be distinct.

Find $i \neq j$, where $0 \leq i < j \leq n$, such that $p_i = p_j$.

Note: $p_0 = q_0$
The Pumping Lemma for RLs

Theorem 4.1 (Pumping lemma, continued)

PROOF:

Break \(w = xyz \) as

\[
\begin{align*}
 x &= a_1 a_2 w a_i \\
 y &= a_i a_{i+1} a_{i+2} w a_j \\
 z &= a_{j+1} a_{j+2} w a_m
\end{align*}
\]

From Figure 4.1 of IATLC, Hopcroft, Motwani, & Ullman, 2001.

Case 1: \(k = 0 \).

Then, \(w = xy^kz = a_1 a_2 w a_i a_{i+1} a_{j+2} w a_m \). \(A \) goes from \(p_0 = q_0 \) to \(p_i \) on prefix \(x \).

Since \(p_i = p_j \), then \(A \) continues from \(p_i \) to \(p_m \in F \) on suffix \(z \). Thus, \(A \) accepts \(w = xz \).

Case 2: \(k > 0 \).

Then, \(A \) goes from \(p_0 = q_0 \) to \(p_i \) on \(x \), circles from \(p_i \) to \(p_j \) \(k \) times on \(y^k \), and then to \(p_m \in F \) on \(z \).

Thus, for any \(k \geq 0 \), \(xy^kz \) is also accepted by \(A \); that is, \(xy^kz \in L \).
The Pumping Lemma for RLs

Use of PL, continued...

4. Applying the PL, we know \(w \) can be broken into \(xyz \), satisfying the PL properties.
 - again, we may not know how to break \(w \), so we use \(x, y, z \) as parameters.

5. Derive a contradiction by picking \(i \) such that \(xy^iz \notin L \).
 - \(i \) might depend on parameter \(n, x, y, \) and/or \(z \).

Example, continued ...

\(L = \{ w \in \{0 \}^* \text{, where } |w| \text{ is a square} \} \)

Claim: \(L \) not regular.

Suppose \(L \) regular. Then \(L = L(A) \) for some DFA \(A = (Q, \Sigma, q_0, F) \); so, let \(n = |Q| \).

Consider \(w = 0^{n^2} \in L \). Then \(w = xyz \), where \(|xy| \leq n \) and \(y \neq \epsilon \).

By PL, \(xyyz \in L \); but, \(n^2 < |xyyz| \leq n^2 + n \).

Since we have derived a contradiction, the only unproved assumption — that \(L \) is regular — must be at fault. Therefore, \(L \) is not regular.

Example:

\(L = \{ w \in \{0 \}^* \text{, where } |w| \text{ is a square} \} \)

Claim: \(L \) not regular.

Suppose \(L \) regular. Then \(L = L(A) \) for some DFA \(A = (Q, \Sigma, q_0, F) \); so, let \(n = |Q| \).

Consider \(w = 0^{n^2} \in L \). Then \(w = xyz \), where \(|xy| \leq n \) and \(y \neq \epsilon \).

By PL, \(xyyz \in L \); but, \(n^2 < |xyyz| \leq n^2 + n \).

Thus \(|xyyz| \) is not square, so \(xyyz \notin L \).

Since we have derived a contradiction, the only unproved assumption — that \(L \) is regular — must be at fault. Therefore, \(L \) is not regular.
The Pumping Lemma for RLs

The Pumping Lemma can be good for you ...

Closure Properties of RLs

Boolean Operations

Theorem 4.4 (Closure under Union)
If L and M are RLs, then so is LM.

Theorem 4.5 (Closure under Kleene star)
If L is RL, then so is L^*.

Theorem 4.8 (Closure under Intersection)
If L and M are RLs, then so is LM.

Theorem 4.10 (Closure under Difference)
If L and M are RLs, then so is $L \setminus M$.

Theorem 4.7 (Closure under Complementation)
If L is RL over Σ, then so is $L = \Sigma^* \setminus L$.
Chapter 4: Properties of Regular Languages

Closure Properties of RLs

- Reversal
 - Definition
 - The reversal of a string \(w = a_1 a_2 \cdots a_n \), denoted \(w^R \), is the string \(w \) written backwards as \(a_n a_{n-1} \cdots a_1 \).
 - Theorem 4.11 (Closure under Reversal)
 - If \(L \) is RL, then so is \(L^R \).

From Figure 4.2 of IATLC, Hopcroft, Motwani, & Ullman, 2001.

Automation for \(\{0,1\}^* - L(A) \), where \(L(A) = (0+1)^* 01 \).

Closure Properties of RLs

- Substitution
 - Take a regular language \(L \) over some alphabet \(\Sigma \).
 - For each \(a \in \Sigma \), let \(L_a \) be a regular language.
 - Let \(s \) be the substitution defined by \(s(a) = L_a \) for each \(a \).
 - Extend \(s \) to strings by \(s(a_1 a_2 \cdots a_n) = s(a_1) s(a_2) \cdots s(a_n) \); i.e., concatenate the languages \(L_{a_1} L_{a_2} \cdots L_{a_n} \).
 - Extend \(s \) to languages by \(s(M) = \bigcup_{w \in M} s(w) \).
 - Then \(s(L) \) is regular.
Closure Properties of RLs

Homomorphisms

- A string homomorphism is a function on strings that works by substituting a particular string for each symbol.

Theorem 4.14

- If \(L \) is a regular language over alphabet \(\Sigma \), and \(h \) is a homomorphism on \(\Sigma \), the \(h(L) \) is also regular.

- Extending \(s \) to strings by \(s: \Sigma^* \times \Sigma^* \).

- Extend \(s \) to languages by \(s: \Sigma^* \times \Sigma^* \).

Note: \(R_i \)'s are regular expressions.
Closure Properties of RLs

Theorem 4.16

If \(h \) is a homomorphism from alphabet \(\Sigma \) to alphabet \(\Gamma \), and \(L \) is a regular language over \(\Gamma \), then \(h^{-1}(L) \) is also a regular language.

Constructive Proof of Theorem 4.16

Given a DFA \(A \) for RL \(L \).

Recall \(h: \Sigma \times \Gamma \to \Gamma \)

\(A = (Q, \Sigma, \delta, s_A, F) \)

So, \(B = (Q, \Sigma, \gamma, s_B, F) \)

where \(\gamma(q, a) = \Delta(q, h(a)) \)

Decision Properties of RLs

Converting among Representations

- NFA-to-DFA, \(O(n^3 2^n) \)
 - Compute \(\varepsilon \)-closure in \(O(n^3) \); for each of the \(2^n \) states in DFA, compute transitions by consulting the \(\varepsilon \)-closure and NFA’s transition table in \(O(n^3) \).
- DFA-to-NFA, \(O(n) \)
 - Modify transition table to be on sets (and \(\varepsilon \))

Converting among Representations, continued ...

- FA-to-RE, \(O(n^3 4^n) \)
 - Generate \(n^2 \) expressions \(n \) times where size of the RE constructed can quadruple in each round.
- RE-to-FA, \(O(n) \)
 - RE of length \(n \); parse RE into expression tree and then use \(\varepsilon \)-NFA construction algorithm.
Decision Properties of RLs

Testing Emptiness of RLs
- Choose DFA representation.
- Use a graph reachability algorithm to test if at least one accepting state is reachable from the start state.
- Note that reachability calculations take no more than $O(n^2)$ if the automaton has n states.

Testing Membership in a RL
- Choose DFA representation.
- Simulate the DFA on input w.

Testing an RL’s Finiteness
- Every finite language is regular (why?).
- A regular language is not necessarily finite.
- DFA A with cycles $\Rightarrow L(A)$ is infinite.
- RE E, presence of $*$ almost always means infinite, except for annihilators and ε^*.

Equivalence & Minimization

Testing Equivalence of States
- Real goal is testing equivalence of representations of two regular languages.
- Interesting fact: DFAs have unique (up to state names) minimum-state equivalents.
- States $p, q \in Q$ of DFA A are equivalent if
 - For all w, $\Delta(p, w)$ is an accepting state if and only if $\Delta(q, w)$ is an accepting state.
 - Note that $\Delta(p, w)$ and $\Delta(q, w)$ do not have to be the same state.
 - If two states are not equivalent, then they are distinguishable.

Example:

From Figure 4.8 of JTL, Hopcroft, Motwani, & Ullman, 2001.
Equivalence & Minimization

Testing Equivalence of States, continued ...

- **Table-filling algorithm** (via recursive discovery)
 - BASIS: \(p \in F, q \notin F \Rightarrow \{ p, q \} \) distinguishable
 - INDUCTION: Let \(p, q \in Q \) such that for some \(a \in \Sigma \), \(r = \delta(p, a) \) and \(s = \delta(q, a) \) are distinguishable. Then, \(\{ p, q \} \) distinguishable.
 - \(\exists w \in \Sigma^* \) that distinguishes \(r \) from \(s \); i.e., either \(\Delta(r, w) \in F \) or \(\Delta(s, w) \in F \), but not both. Then, string \(aw \) must distinguish \(p \) from \(q \) since \(\Delta(p, aw) = \Delta(r, w) \) and \(\Delta(q, aw) = \Delta(s, w) \).

Equivalence & Minimization

- **Theorem 4.20**
 - If two states are not distinguished by the table-filling algorithm, then the states are equivalent.
 - **Testing Equivalence of RLs**
 - Given regular languages \(L_1 \) and \(L_2 \)
 - Convert each representation to a DFA
 - Consider DFA \(A \) where \(L(A) = L_1 \cap L_2 \)
 - Use the table-filling algorithm to test if \(\{ s_1, s_2 \} \) are equivalent; if so, \(L_1 = L_2 \)

Equivalence & Minimization

- **Example**: (See Figure 4.8 or Slide 32)
 - \(x \) indicates pairs of distinguishable states and a blank square indicates equivalence
 - \(\checkmark \) indicates final states

Equivalence & Minimization

- **Example**:
Equivalence & Minimization

Minimization of DFAs

- For each DFA there is an equivalent DFA that has as few states as any DFA accepting the same language. Further, this minimum-state DFA is unique for the language.
- State equivalence partitions the set of states.

Example:

From Figure 4.11 of *IATLC*, Hopcroft, Motwani, & Ullman, 2001.
Partitions:
- \{A, E\}
- \{B, H\}
- \{C\}
- \{D, F\}
- \{G\}

Theorem 4.23

The equivalence of states is transitive.

Theorem 4.24

If we create for each state \(q\) of a DFA a block consisting of \(q\) and all the states equivalent to \(q\), then the different blocks of states form a partition of the set of states.
Equivalence & Minimization

DFA minimization algorithm \(A = (Q_A, \Sigma, \delta_A, s_A, F_A) \)

1. Use the *table-filling algorithm* to find all pairs of equivalent states.
2. Partition the set of states \(Q_A \) into blocks of mutually exclusive states by the method described above.
3. Construct the minimum-state equivalent DFA \(B \) by using the blocks as its states.
 - \(s_B \) is the block containing \(s_A \).
 - \(F_B \) is the set of blocks containing \(f \in F_A \).

Theorem 4.26

If \(A \) is a DFA and \(M \) the DFA constructed from \(A \) by the *DFA minimization algorithm*, then \(M \) has as few states as any DFA equivalent to \(A \).