Why Study Automata Theory?

- **Introduction to Finite Automata**
 - In the late 1950’s, the linguist Noam Chomsky begun the study of formal “grammars.”
 - In 1969, Stephen Cook defined “intractable” or “NP-hard” problems — problems that can in principle be solved, but in practice take so much time that computers are useless for all but very small instances of the problem.

- **Automata Theory** – study of abstract computing devices, or “machines.”
 - In the 1930’s, Alan Turing studied and described precisely the boundary between what a(n) (abstract) computing machine could do and what it could not do.

Structural Representations

- **Grammars**
 - Useful models when designing software that processes data with a recursive structure.
 - Example: parser for a compiler.

- **Regular Expressions**
 - Denote the structure of data; in particular, text strings.
 - Example: Unix-style regular expressions

' ([A-Z][a-z]* [])* [A-Z][A-Z]'
Automata and Complexity

- **Decidability (see Chapter 9)**
 - What can a computer do at all?
 - Problems that can be solved by computer are called “decidable.”

- **Intractability (see Chapter 10)**
 - What can a computer do efficiently?
 - Problems that can be solved by a computer using no more time than some slowly growing (polynomial) function of the size of the input are called “tractable.”

Introduction to Formal Proof

- **Deductive Proofs**
 - **Form**: From some initial statement H, called the *hypothesis* or the *given statement(s)*, provide a sequence of statements whose truth leads to a *conclusion* statement C; C is *deduced* from H.
 - Typically given as a theorem of the form, “If H then C,,” as in
 - Theorem: If $x \geq 4$, then $2^x \geq x^2$.
 - Perhaps, the most common type of proof...

- **Reduction to Definitions**
 - It is sometimes helpful to convert all terms in the hypothesis to their definitions ...
 - **Note**: Given the statement “If H then $C,$”
 - contrapositive: “If not C then not H”
 - converse: “If C then H”
 - contradiction: “H and not C implies false”
 - **Note**: To prove that a statement S is not a theorem, it suffices to show a *counterexample*.

- **Proof by Mathematical Induction**
 - **Form**: Prove a statement $S(X)$ about a family of objects X (e.g. integers, trees) in three parts:
 - **Basis**: Show $S(X)$ holds for one or several small values of X directly.
 - **Inductive Hypothesis**: Assume $S(Y)$ holds for values $Y \leq n$.
 - **Inductive Step**: Show that $S(n+1)$ holds using the inductive hypothesis.
Proof by Mathematical Induction

Example:

Prove that a binary tree with \(n \) leaves has \(2^n - 1 \) nodes.

Formally, \(S(T) \): If \(T \) is a binary tree with \(n \) leaves, then \(T \) has \(2^n - 1 \) nodes.

Induction is on the number of nodes in \(T \).

Basis: If \(T \) is a one-node tree, then has only one leaf; \(1 = 2 \times 1 - 1 \), so OK.

Inductive Hypothesis: Assume \(S(U) \) holds for all binary trees \(U \) with at most \(k \) leaves

Hence, if \(U \) is a binary tree with \(k \) leaves, \(U \) has \(2^k - 1 \) nodes.

Inductive Step: Consider a binary tree \(T \) with \(k+1 \) leaves ...

\(T \) must have two subtrees \(U \) and \(V \).

If \(U \) and \(V \) have \(u \) and \(v \) leaves, respectively, then \(T \) has \(u + v = k+1 \) leaves.

Proof by Mathematical Induction

Example (continued):

Prove that a binary tree with \(n \) leaves has \(2^n - 1 \) nodes.

Inductive Step: Consider a binary tree \(T \) with \(k+1 \) leaves ...

\(T \) must have two subtrees \(U \) and \(V \).

If \(U \) and \(V \) have \(u \) and \(v \) leaves, respectively, then \(T \) has \(u + v = k+1 \) leaves.

Proof by Equivalence

Example (continued):

Form: Prove “\(X \) if and only if \(Y \)”

The proof has to be done in two steps:

Prove the if-part: Assume \(Y \) and prove \(X \).

Prove the only-if-part: Assume \(X \) and prove \(Y \).

Example: Equivalence of sets \(S \) and \(T \) can be shown when \(x \) is in \(S \) if and only if \(x \) is in \(T \).

Assume \(x \) is in \(S \); prove \(x \) is in \(T \).

Assume \(x \) is in \(T \); prove \(x \) is in \(S \).
Proof by Equivalence

Form: Prove “X if and only if Y.”

Remember:
- The if-part and only-if-part are converses of each other.
- One part, say “if X then Y,” says nothing about whether Y is true when X is false.
- An alternate, equivalent form of “if X then Y” is “if not Y then not X” – the latter is a contrapositive of the former.

Example: Balanced Parentheses
Two ways to define “balanced parentheses”:

1. Grammatically (GB):
 a) The empty string, ε, is balanced.
 b) If w is balanced, then (w) is balanced.
 c) If w and x are balanced, then so is wx.

2. By Scanning (SB): w is balanced if and only if
 a) w has an equal number of left and right parentheses
 b) Every prefix of w has at least as many left as right parentheses

Theorem: A string of parentheses w is GB if and only if w is SB.

Proof (if-part):
- Assume w is SB; prove it is GB by induction on $|w|$, the length of string w.

Basis: If $|w| = 0$ (i.e. w is ε), then w is GB by GB rule a.
Inductive Hypothesis: Suppose the statement “if SB then GB” is true for all w where $|w| < n$.

Inductive Step: Show that the statement “if SB then GB” is true for all w where $|w| \geq n$.

Case 1: w is not ε, but has no nonempty prefix that has an equal number of (and). Then, w must begin with (and end with); i.e. $w = (x)$.
- x must be SB (why?).
- x is GB by the Inductive Hypothesis.
- (x) is GB by GB rule b; but $(x) = w$, so w is GB.
Proof by Equivalence

Inductive Step: Show that the statement “if SB then GB” is true for all w where $|w| \geq n$.

- Case 2: $w=xy$, where x is the shortest, nonempty prefix of w with an equal number of (and), and $y \neq \varepsilon$.
 - x and y are both SB (why?).
 - x and y are both GB by the Inductive Hypothesis.
 - w is GB by GB rule c.

Proof by Equivalence

Theorem: A string of parentheses w is GB if and only if w is SB.

Proof (only-if-part):

- Assume w is GB; prove it is SB by induction on $|w|$, the length of string w.

Basis: If $|w|=0$ (i.e. w is ε), then clearly w obeys the conditions for being SB.

Inductive Hypothesis: Suppose the statement “SB only if GB” is true for all $w \neq \varepsilon$ where $|w|<n$.

Inductive Step: Show that the statement “SB only if GB” is true for all w where $|w| \geq n$.

- **Case 1:** w is GB by GB rule b; i.e. $w=(x)$ and x is GB.
 - x is SB by Inductive Hypothesis.
 - Since x has equal number of (and), so does (x).
 - Since x has no prefix with more (than), then so does (x).

- **Case 2:** $w \neq \varepsilon$ is GB by GB rule c; i.e. $w=xy$ and both x and y are GB.
 - x and y are SB by Inductive Hypothesis.
 - (Aside) Trickier than it looks: we have to argue that neither $x \neq \varepsilon$ nor $y \neq \varepsilon$, because if one were, the other would be w, and this rule application could not be the one that first shows w to be GB.
 - Since each of x and y have equal number of (and), so does xy.
Proof by Equivalence

Inductive Step: Show that the statement “SB only if GB” is true for all \(w \) where \(|w| \geq n \).

Case 2: continued ...

If \(w \) had a prefix with more) than (, that prefix would either be a prefix of \(x \) (contradicting the fact that \(x \) has no such prefix) or it would be \(x \) followed by a prefix of \(y \) (contradicting the fact that \(y \) also has no such prefix).

(Aside) Above is an example of **proof by contradiction** — we assumed our conclusion about \(w \) was false and showed it would imply something that we know is false.

Languages

- **Alphabet** = finite set of symbols
 - Examples: \(\{0,1\} \) (the binary alphabet) \(\{a,b,c,...,z\} \)
- **String** = finite sequence of symbols chosen from some alphabet
 - Examples: \(01101 \)
 - **abracadabra**
- **Language**
 - = set of strings chosen from some alphabet

Powers of an alphabet

- If \(\Sigma \) is an alphabet, define \(\Sigma^k \) to be the set of strings of length \(k \), consisting of symbols in \(\Sigma \).
- The set of **all** strings over \(\Sigma \) is denoted \(\Sigma^* \); and,
 \[
 \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots \cup \omega
 \]
- The set of **nonempty** strings over \(\Sigma \) is denoted \(\Sigma^+ \); further,
 \[
 \Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots \cup \omega
 \]
 \[\Sigma^* = \Sigma^+ \cup \{\varepsilon\}\]

Note:
- A language may be infinite, but there is some finite set of symbols of which all its strings are composed from.
- **Examples:**
 - The set of all **binary** strings consisting of some number of \(0 \)'s followed by an equal number of \(1 \)'s; that is, \(\{ \varepsilon, 01, 0011, 000111, \ldots \} \).
 - C (the set of compilable C programs)
 - **English**
Languages

- More Abstract Examples:
 - The set of binary numbers whose value is prime; that is, \{10, 11, 101, 111, 1011, \ldots\}
 - \(\Sigma^*\) is a language for any alphabet \(\Sigma\)
 - \(\emptyset\), the empty language, is a language over any alphabet.
 - \(\{\varepsilon\}\), the language consisting of only the empty string, is also a language over any alphabet.

Problems

- In automata theory, a *problem* is the question of deciding whether a given string is a member of some particular language.
- Hence, if \(\Sigma\) is an alphabet, and \(L\) is a language over \(\Sigma\), then the problem \(L\) is:

 Given a string \(w \in \Sigma^*\), decide if \(w \in L\).