Preliminaries

The reduction technique revisited: a way to show that a problem is \(\text{NP} \)-complete is to use the deduction rule below.

\[
\begin{align*}
L & \text{ is } \text{NP}-\text{complete} \\
L' & \text{ is in } \text{NP} \\
\text{There is a mapping } f \text{ such that } x \in L \iff f(x) \in L' & \text{ holds for all } x \\
f(x) & \text{ can be computed in logarithmic space w.r.t. } |x| \\
L' & \text{ is } \text{NP}-\text{complete}
\end{align*}
\]

A Proof that FEEDBACK VERTEX SET is \(\text{NP} \)-complete

Preliminaries

The problem NODE COVER is the following:

Given an undirected graph \(G = \langle V, E \rangle \) and an integer \(B \leq |V| \), is there a subset \(V' \subseteq V \), \(|V'| \leq B \), such that each edge in \(G \) has at least one of its endpoints in \(V' \).

We know that NODE COVER is \(\text{NP} \)-complete (see page 190 in Papadimitriou’s book).

The Problem and a Solution

Show that the following problem, called FEEDBACK VERTEX SET, is \(\text{NP} \)-complete:

Given a directed graph \(G = \langle V, E \rangle \) and an integer \(B \leq |V| \), is there a subset \(V' \subseteq V \) such that (i) \(|V'| \leq B \), and (ii) every directed circuit in \(G \) includes at least one vertex from \(V' \)?

Note that an equivalent definition of the problem is: Given a directed graph \(G = \langle V, E \rangle \) and an integer \(B \leq |V| \), is there a subset \(V' \subseteq V \) such that (i)
\(|V'| \leq B\), and (ii) the directed graph \(G' = (V \setminus V', E \cap (V \setminus V') \times (V \setminus V'))\) has no cycles?

Obviously FEEDBACK VERTEX SET is in \(\text{NP}\): (i) guess the set \(V'\) such that \(|V'| \leq B\), and (ii) use, e.g., Tarjan’s algorithm for finding strongly connected components of a graph to check whether \(G' = (V \setminus V', E \cap (V \setminus V') \times (V \setminus V'))\) has any cycles.

We show the \(\text{NP}\)-hardness by reducing from the \(\text{NP}\)-complete problem NODE COVER. Given an input \(G; B\) for NODE COVER, where \(G = (V, E)\) is an undirected graph and \(B \leq |V|\) is an integer, the corresponding input for FEEDBACK VERTEX SET is \(\hat{G}; B\), where \(\hat{G}\) is the directed graph \(\hat{G} = (V, \hat{E} = \{\{v_i, v_j\} \mid \{v_i, v_j\} \in E\})\). That is, \(\hat{G}\) is \(G\) interpreted as a directed graph.

Now if \(G\) has a node cover \(V'\), \(|V'| \leq B\), then the directed graph \(G' = (V \setminus V', \hat{E} \cap (V \setminus V') \times (V \setminus V'))\) has no edges and thus cannot have any cycles. Thus if \(V'\) is a node cover for \(G\), then \(V'\) is a feedback vertex set for \(\hat{G}\).

On the other hand, assume that \(\hat{G}\) has a feedback vertex set \(V'\), \(|V'| \leq B\). Then for each edge pair \(\langle v_i, v_j \rangle\) and \(\langle v_j, v_i \rangle\) between the nodes \(v_i\) and \(v_j\), at least one of \(v_i, v_j\) has to be in \(V'\) (otherwise \(G' = (V \setminus V', \hat{E} \cap (V \setminus V') \times (V \setminus V'))\) would have a cycle \(v_i \rightarrow v_j \rightarrow v_i\)). Therefore \(V'\) is also a node cover for \(G\).

To sum up, \(V'\) is a node cover of \(G\) iff \(V'\) is a feedback vertex set of \(\hat{G}\). Obviously the reduction can be computed in logarithmic space.

A Proof that PARTITION INTO TRIANGLES is NP-complete

Preliminaries

Graphs in this exercise are assumed to be undirected and not containing self-loops.

The problem EXACT COVER BY 3-SETS is the following:

We are given a family \(F = \{S_1, \ldots, S_n\}\) of subsets of a set \(U\), such that \(|U| = 3m\) for some integer \(m\), and \(|S_i| = 3\) for all \(i\). The question is whether there are \(m\) sets in \(F\) that are disjoint and have \(U\) as their union.
We know that EXACT COVER BY 3-SETS is \(\mathbf{NP} \)-complete (see page 201 in Papadimitriou’s book).

The Problem and a Solution

Show that the following problem, called PARTITION INTO TRIANGLES, is \(\mathbf{NP} \)-complete:

Given a graph \(G = (V, E) \) with \(|V| = 3q \) for an integer \(q \), is there a partition of \(V \) into \(q \) mutually disjoint sets \(V_1, V_2, \ldots, V_q \) of three vertices each such that, for each \(V_i = \{v_{i,1}, v_{i,2}, v_{i,3}\} \), the three edges \(\{v_{i,1}, v_{i,2}\}, \{v_{i,1}, v_{i,3}\}, \text{ and } \{v_{i,2}, v_{i,3}\} \) all belong to \(E \)?

Clearly PARTITION INTO TRIANGLES is in \(\mathbf{NP} \) because we can first nondeterministically guess a partition of \(V \) and then check (in deterministic polynomial time) that each \(V_i \) fulfills the triangle condition.

We show the \(\mathbf{NP} \)-hardness by reducing from the \(\mathbf{NP} \)-complete problem EXACT COVER BY 3-SETS. Assume that we are given a set \(U \) such that \(|U| = 3m \) for some integer \(m \) and a family \(F = \{S_1, \ldots, S_n\} \) of subsets of \(U \) such that \(|S_i| = 3 \) for all \(i \). We now construct a graph \(G = (V, E) \) with \(|V| = 3q' \) such that \(G \) can be partitioned into \(q' \) triangles iff \(F \) contains an exact cover for \(U \).

First, it can be safely assumed that each element \(u \in U \) appears in at least one set \(S_i \) in \(F \): if this is not the case, then \(F \) cannot have an exact cover for \(U \) and we can simply output a simple constant graph that cannot be partitioned into triangles. Otherwise, we substitute for each set \(S_i = \{u, v, w\} \) appearing in \(F \) the collection \(E_i \) of 18 edges shown below.

![Diagram](image-url)
The graph \(G = \langle V, E \rangle \) is now defined by

\[
V = U \cup \bigcup_{i=1}^{n} \{a_{i,j} \mid 1 \leq j \leq 9\}
\]

\[
E = \bigcup_{i=1}^{n} E_i.
\]

Now \(|V| = |U| + 9n = 3m + 9n \) and thus \(q' = m + 3n \). Note that only the \(U \)-vertices may be shared by different \(E_i \)s.

Assume that \(F' \subseteq F \) is an exact partition of \(U \) (and thus \(|F'| = m \)). Then, if \(S_i = \{u, v, w\} \in F' \), take \(\{a_{i,3}, a_{i,6}, a_{i,9}\} \), \(\{v, a_{i,4}, a_{i,5}\} \) and \(\{w, a_{i,7}, a_{i,8}\} \) to belong to the triangle partition of \(G \) and, if \(S_i = \{u, v, w\} \notin F' \), choose \(\{a_{i,1}, a_{i,2}, a_{i,3}\} \), \(\{a_{i,4}, a_{i,5}, a_{i,6}\} \) and \(\{a_{i,7}, a_{i,8}, a_{i,9}\} \) to belong to the triangle partition of \(G \). Clearly the result is a valid triangle partition of \(G \) because the partition is disjoint, each vertex is in the partition and the partition has \(q' = m + 3n \) sets.

To show the opposite direction, assume that \(V \) can be partitioned into \(q' = m + 3n \) triangles \(V_1, V_2, \ldots, V_{q'} \). Then the corresponding exact cover of \(U \) is given by choosing those \(S_i \) of \(F \) such that \(\{a_{i,3}, a_{i,6}, a_{i,9}\} = V_k \) for some \(1 \leq k \leq q' \). This is justified as follows. For each \(u \in U \) there is exactly one triangle into which \(u \) belongs, let's say it was \(\{u, a_{i,1}, a_{i,2}\} \). Then \(\{a_{i,3}, a_{i,6}, a_{i,9}\} \), \(\{v, a_{i,4}, a_{i,5}\} \) and \(\{w, a_{i,7}, a_{i,8}\} \) for \(S_i = \{u, v, w\} \) must also be in the triangle partition. Furthermore, since no other \(\{u, a_{j,x}, a_{j,y}\} \) can be in the triangle partition, the corresponding \(\{a_{j,3}, a_{j,6}, a_{j,9}\} \) cannot be in the triangle partition. Therefore each \(u \) appears in exactly one chosen \(S_i \). This also implies that we choose exactly \(m \) \(S_i \)s.

We have thus showed that \(G \) can be partitioned into \(q' = m + 3n \) triangles iff \(F \) contains an exact cover of \(m \) sets for \(U \).

To show that the reduction can be carried out in logarithmic space, note that the reduction is made by local substitutions. We therefore need \(3 \) registers of length \(\log(3m) \) to remember the elements in the currently processed set \(S_i \) of \(F \) and one counter of length \(\log n \) to remember the number \(i \) of the set. We then just output the edges in \(E_i \) to the output tape.