Chapter 5.

5.1.
(a) 6
(b) 0
(c) 1
(d) 0.8
(e) 1.3333333333333333
(f) 2
(g) 9
(h) 9
(i) 2
(j) 0
(k) 19.0
(l) 5.0
(m) -3
(n) 18
(o) 0
(p) 2
(q) -1.6666666666666667
(r) 4

5.2.
a. 2*i
b. return 2*i;
c. i = 2*i;

5.3.
(a) i: 4; j: 5
(b) i: 4; j: 4
(c) i: 4; j: 2
(d) i: 4; j: 2

5.4.
ones = i%10:
tens = i/10;

5.5.
dollars = dollars + pennies/100;
cents = cents + pennies%100;

5.6.
dollars = dollars + (nickles*5)/100;
cents = cents + (nickles*5)%100;

5.7.
dollars = dollars + (nickles*5+pennies)/100;
cents = cents + (nickles*5+pennies)%100;

5.8.

\texttt{public void doubleCount () \{}
\hspace{1em} \texttt{tally = 2*tally;
\}

5.9.

\texttt{public Counter () \{}
\hspace{1em} \texttt{tally = 0;
\hspace{1em} \texttt{savedTally = 0;
\}

\texttt{public void reset (0 \{}
\hspace{1em} \texttt{savedTally = tally;
\hspace{1em} \texttt{tally = 0;
\}

/* **/
public void unReset () {
 tally = savedTally;
}

private int savedTally; // The value of tally prior to the last reset.

public class Date {

 /**
 * Create a new Date with the specified day, month, and year.
 * day must a value in the range 1 to maximum number of days
 * in the month.
 * month must a value in the range 1 to 12, with 1 indicating
 * January, etc.
 * year must be a value greater than 0.
 */
 public Date (int day, int month, int year) {
 thisDay = day;
 thisMonth = month;
 thisYear = year;
 }

 /**
 * The Day of this Date.
 */
 public int getDay () {
 return thisDay;
 }

 /**
 * The month of this Date. 1 is January, etc.
 */
 public int getMonth () {
 return thisMonth;
 }

 /**
 * The year of this Date.
 */
 public int getYear () {
 return thisYear;
 }
}
// Components:

private int thisDay; // the day of the month
private int thisMonth; // the month: 1 is January, etc.
private int thisYear; // the year (AD)

} // end of class Date

5.11.

public class Lamp {

 // Constants:

 public final static int OFF = 0; // the off state
 public final static int LOW = 1; // the low state
 public final static int MED = 2; // the medium state
 public final static int HIGH = 3; // the high state

 // Constructors:

 /**
 * Create a new Lamp. Lamp is initially off.
 */
 public Lamp () {
 state = OFF;
 }

 //Queries:

 /**
 * The state of this Lamp. Lamp.OFF == off, Lamp.LOW == low,
 * Lamp.MED == medium, Lamp.HIGH == high.
 */
 public int getState () {
 return state;
 }

 // Commands:

 /**
 * Advance the Lamp to the next state. If off, advance
 * to low; if low, advance to medium; if medium,
 * advance to high; if high, advance to off.
 */
 public void advance () {
 state = (state+1) % NUMBER_OF_STATES;
 }
}
// Private constants:

private final static int NUMBER_OF_STATES = 4; // the number of distinct states.

// Components:

private int state; // the current state of this Lamp

} // end of class Lamp

5.12.

public class Rectangle {

 // Components // the width of this Rectangle // the length of this Rectangle

 private double thisLength; private double thisWidth; /**
 * Create a new Rectangle with the specified length and width.
 * length and width must be non-negative.
 */
 public Rectangle (double length, double width) {
 thisLength = length;
 thisWidth = width;
 }

 // Queries:

 /**
 * The length of this Rectangle.
 */
 public double getLength () {
 return thisLength;
 }

 /**
 * The width of this Rectangle.
 */
 public double getWidth () {
 return thisWidth;
 }

 /**
 * The area of this Rectangle.
 */
 public double getArea () {
 return thisLength*thisWidth;
 }
// Commands:
/**
 * Set the length of this Rectangle. newLength must be non-negative.
 */
public void setLength (double newLength) {
 thisLength = newLength;
}

/**
 * Set the width of this Rectangle. newWidth must be non-negative.
 */
public void setWidth (double newWidth) {
 thisWidth = newWidth;
}

} // end of class Rectangle

5.13.
/**
 * Move to the specified Room.
 */
public void move (rooms.Room newRoom) {
 room.exit();
 room = newRoom;
 room.enter();
}
5.14. a.

```java
private String thisName;
private String thisAddress;
private String thisSsn;
private int creditHours;
private int feesPaid;
private courses.CourseList schedule;
```

b.

```java
/**
 * The social security number of this Student.
 */
public String getSsn () {
    return thisSsn;
}

/**
 * Change this Student’s social security number to the
 * specified value.
 */
public void changeSsn (String newSsn) {
    thisSsn = newSsn;
}

c.

```java
/**
 * This Student’s current fees (dollars).
 */
public int getFees () {
 return 100*creditHours; // better to use a named constant.
}

d.

```java
/**
 * Fees paid by this Student (dollars).
 */
public int getFeesPaid () {
    return feesPaid;
}

/**
 * This Student has paid the specified amount (dollars).
 */
public void payFees (int amount) {
    feesPaid = feesPaid + amount;
}

c.

```java
/**
 * Create a new Student with the specified name, address, and social
 * security number.
 */
```