Decision Trees & Rule Induction

Michael van Lent
The Big Picture

- Problem
 - Classification
- Feedback
 - Supervised learning
 - Reinforcement learning
- Knowledge Representation
 - Decision tree
 - Rules
- Knowledge Source
 - Examples
Decision Trees

• Nodes represent attribute tests
 • One child for each possible value of the attribute

• Leaves represent classifications

• Classify by descending from root to a leaf
 • At root test attribute associated with root attribute test
 • Descend the branch corresponding to the instance’s value
 • Repeat for subtree rooted at the new node
 • When a leaf is reached return the classification of that leaf

• Decision tree is a disjunction of conjunctions of constraints on the attribute values of an instance
Example Problem

Classify how I should react to an object in the world

- **Facts about any given object include:**
 - Allegiance = <friendly, neutral, enemy>
 - Health = <low, medium, full>
 - Animate = <true, false>
 - RelativeHealth = <weaker, same, stronger>

- **Output categories include:**
 - Reaction = Attack
 - Reaction = Ignore
 - Reaction = Heal
 - Reaction = Eat
 - Reaction = Run

- <friendly, low, true, weaker> => Heal
- <neutral, low, true, same> => Heal
- <enemy, low, true, stronger> => Attack
- <enemy, medium, true, weaker> => Attack
Classifying with a Decision Tree

- Allegeance?
 - Friendly
 - Neutral
 - Enemy

- Health?
 - Low
 - Heal
 - Medium
 - Heal
 - Full
 - Heal
 - Ignore

- Attack?
 - Low
 - Heal
 - Ignore
 - Medium
 - Heal
 - Ignore
 - Full
 - Ignore
Classifying with a Decision Tree

![Decision Tree Diagram]

1. **Health?**
 - **Low**
 - **Medium**
 - **Full**

2. **Allegiance?**
 - **Friendly**
 - **Heal**
 - **Neutral**
 - **Heal**
 - **Ignore**
 - **Enemy**
 - **Heal**
 - **Ignore**

3. If **Full**, then **Ignore**.

Attack
Decision Trees are good when:

- Inputs are attribute-value pairs
 - With fairly small number of values
 - Numeric or continuous values cause problems
 - Can extend algorithms to learn thresholds
- Outputs are discrete output values
 - Again fairly small number of values
 - Difficult to represent numeric or continuous outputs
- Disjunction is required
 - Decision trees easily handle disjunction
- Training examples contain errors
 - Learning decision trees
 - More later
Learning Decision Trees

• Decision trees are usually learned by induction
 • Generalize from examples
 • Induction doesn’t guarantee correct decision trees

• Bias towards smaller decision trees
 • Occam’s Razor: Prefer simplest theory that fits the data
 • Too expensive to find the very smallest decision tree

• Learning is non-incremental
 • Need to store all the examples

• ID3 is the basic learning algorithm
 • C4.5 is an updated and extended version
Induction

• If X is true in every example X must always be true
 • More examples are better
 • Errors in examples cause difficulty
 • Note that induction can result in errors

• Inductive learning of Decision Trees
 • Create a decision tree that classifies the available examples
 • Use this decision tree to classify new instances
 • Avoid over fitting the available examples
 • One root to node path for each example
 • Perfect on the examples, not so good on new instances
Induction requires Examples

• Where do examples come from?
 • Programmer/designer provides examples
 • Observe a human’s decisions

• # of examples need depends on difficulty of concept
 • More is always better

• Training set vs. Testing set
 • Train on most (75%) of the examples
 • Use the rest to validate the learned decision trees
ID3 Learning Algorithm

- ID3 has two parameters
 - List of examples
 - List of attributes to be tested
- Generates tree recursively
 - Chooses attribute that best divides the examples at each step

ID3(examples, attributes)

if all examples in same category then
 return a leaf node with that category
if attributes is empty then
 return a leaf node with the most common category in examples
best = Choose-Attribute(examples, attributes)
tree = new tree with Best as root attribute test
foreach value v_i of best
 examples$_i$ = subset of examples with best == v_i
 subtree = ID3(examples$_i$, attributes – best)
 add a branch to tree with best == v_i and subtree beneath
return tree
Examples

- <friendly, low, true, weaker> => Heal
- <neutral, full, false, same> => Eat
- <enemy, low, true, weaker> => Eat
- <enemy, low, true, same> => Attack
- <neutral, low, true, weaker> => Heal
- <enemy, medium, true, stronger> => Run
- <friendly, full, true, same> => Ignore
- <neutral, full, true, stronger> => Ignore
- <enemy, full, true, same> => Run
- <enemy, medium, true, weaker> => Attack
- <friendly, full, true, weaker> => Ignore
- <neutral, full, false, stronger> => Ignore
- <friendly, medium, true, stronger> => Heal

- 13 examples
 - 3 Heal
 - 2 Eat
 - 2 Attack
 - 4 Ignore
 - 2 Run
Entropy

- Entropy: how “mixed” is a set of examples
 - All one category: Entropy = 0
 - Evenly divided: Entropy = \(\log_2(\# \text{ of examples}) \)
- Given S examples Entropy(S) = \(S - \sum p_i \log_2 p_i \)
 where \(p_i \) is the proportion of S belonging to class i
 - 13 examples with 3 heal, 2 attack, 2 eat, 4 ignore, 2 run
 - Entropy([3,2,2,4,2]) = 2.258
 - 13 examples with all 13 heal
 - Entropy ([13,0,0,0,0]) = 0
 - Maximum entropy is \(\log_2 5 = 2.322 \)
 - 5 is the number of categories
Information Gain

• Information Gain measures the reduction in Entropy
 • \(\text{Gain}(S, A) = \text{Entropy}(S) - \frac{S \cdot \text{Entropy}(S_v)}{S} \)

• Example: 13 examples: \(\text{Entropy}([3,2,2,4,2]) = 2.258 \)
 • Information gain of Allegiance = \(<\text{friendly, neutral, enemy}>\)
 • Allegiance = friendly for 4 examples \([2,0,0,2,0]\)
 • Allegiance = neutral for 4 examples \([1,1,0,2,0]\)
 • Allegiance = enemy for 5 examples \([0,1,2,0,2]\)
 • \(\text{Gain}(S, \text{Allegiance}) = 0.903 \)

• Information gain of Animate = \(<\text{true, false}>\)
 • Animate = true for 11 examples \([3,1,2,3,2]\)
 • Animate = false for 2 examples \([0,1,0,1,0]\)
 • \(\text{Gain}(S, \text{Animate}) = 0.216 \)

• Allegiance has a higher information gain than Animate
 • So choose allegiance as the next attribute to be tested
Learning Example

- Information gain of Allegiance
 - 0.903

- Information gain of Health
 - 0.853

- Information gain of Animate
 - 0.216

- Information gain of RelativeHealth
 - 0.442

- So Allegiance should be the root test
Decision tree so far

Allegiance?

Friendly Neutral Enemy

? ? ?
Allegiance = friendly

- Four examples have allegiance = friendly
 - Two categorized as Heal
 - Two categorized as Ignore
 - We’ll denote this now as [# of Heal, # of Ignore]
 - Entropy = 1.0

- Which of the remaining features has the highest info gain?
 - Health: low [1,0], medium [1,0], full [0,2] => Gain is 1.0
 - Animate: true [2,2], false [0,0] => Gain is 0
 - RelativeHealth: weaker [1,1], same [0,1], stronger [1,0] => Gain is 0.5

- Health is the best (and final) choice
Decision tree so far

Allegiance?

Friendly
- Health
 - Low
 - Heal
 - Medium
 - Full
 - Heal

Neutral

Enemy
- ?
- ?

Friendly
- ?
- Heal
- Ignore
Allegiance = enemy

- Five examples have allegiance = enemy
 - One categorized as Eat
 - Two categorized as Attack
 - Two categorized as Run
 - We’ll denote this now as [# of Eat, # of Attack, # of Run]
 - Entropy = 1.5

- Which of the remaining features has the highest info gain?
 - Health: low [1,1,0], medium [0,1,1], full [0,0,1] => Gain is 0.7
 - Animate: true [1,2,2], false [0,0,0] => Gain is 0
 - RelHealth: weaker [1,1,0], same [0,1,1], stronger [0,0,1] => Gain is 0.7

- Health and RelativeHealth are equally good choices
Decision tree so far

Allegiance?

Friendly
- Health
 - Low
 - Heal
 - Medium
 - Heal
 - High
 - Ignore

Neutral

Enemy
- Health
 - Low
 - ?
 - Medium
 - ?
 - Full
 - Run
Final Decision Tree

- Allegiance?
 - Friendly
 - Neutral
 - Enemy

- RelHealth
 - Health
 - Heal
 - Low
 - Heal
 - Medium
 - Heal
 - Full
 - Ignore
 - Low
 - Heal
 - Medium
 - Heal
 - Full
 - Ignore
 - Eat
 - Low
 - Eat
 - Medium
 - Eat
 - Full
 - Ignore
 - Run
 - Attack
 - Attack
 - Attack
 - Attack
 - Attack
 - Attack
 - Run
 - Run
Generalization

• Previously unseen examples can be classified
 • Each path through the decision tree doesn’t test every feature
 • <neutral, low, false, stronger> => Eat

• Some leaves don’t have corresponding examples
 • (Allegiance=enemy) & (Health=low) & (RelHealth=stronger)
 • Don’t have any examples of this case
 • Generalize from the closest example
 • <enemy, low, false, same> => Attack
 • Guess that: <enemy, low, false, stronger> => Attack
Decision trees in Black & White

• Creature learns to predict the player’s reactions
 • Instead of categories, range [-1 to 1] of predicted feedback
 • Extending decision trees for continuous values
 • Divide into discrete categories
 • ...

• Creature generates examples by experimenting
 • Try something and record the feedback (tummy rub, slap…)
 • Starts to look like reinforcement learning

• Challenges encountered
 • Ensuring everything that can be learned is reasonable
 • Matching actions with player feedback
Decision Trees and Rules

- Decision trees can easily be translated into rules
 - and vice versa

If (Allegiance=friendly) & ((Health=low) | (Health=medium)) then Heal
If (Allegiance=friendly) & (Health=high) then Ignore
If (Allegiance=neutral) & (Health=low) then Heal

... If (Allegiance=neutral) & (Health=low) then Heal

If (Allegiance=enemy) then Attack
Rule Induction

- **Specific to General Induction**
 - First example creates a very specific rule
 - Additional examples are used to generalize the rule
 - If rule becomes too general create a new, disjunctive rule

- **Version Spaces**
 - Start with a very specific rule and a very general rule
 - Each new example either
 - Makes the specific rule more general
 - Makes the general rule more specific
 - The specific and general rules meet at the solution
Learning Example

• First example: <friendly, low, true, weaker> => Heal
 • If (Allegiance=friendly) & (Health=low) & (Animate=true) & (RelHealth=weaker) then Heal

• Second example: <neutral, low, true, weaker> => Heal
 • If (Health=low) & (Animate=true) & (RelHealth=weaker) then Heal
 • Overgeneralization?
 • If ((Allegiance=friendly) | (Allegiance=neutral)) & (Health=low) & (Animate=true) & (RelHealth=weaker) then Heal

• Third example: <friendly, medium, true, stronger> => Heal
 • If ((Allegiance=friendly) | (Allegiance=neutral)) & ((Health=low) | (Health=medium)) & (Animate=true) & ((RelHealth=weaker) | (RelHealth=stronger)) then Heal
Advanced Topics

• **Boosting**
 • Manipulate the set of training examples
 • Increase the representation of incorrectly classified examples

• **Ensembles of classifiers**
 • Learn multiple classifiers (i.e. multiple decision trees)
 • All the classifiers vote on the correct answer (only one approach)
 • “Bagging”: break the training set into overlapping subsets
 • Learn a classifier for each subset
 • Learn classifiers using different subsets of features
 • Or different subsets of categories
 • Ensembles can be more accurate than a single classifier
Games that use inductive learning

• Decision Trees
 • Black & White

• Rules
Inductive Learning Evaluation

• **Pros**
 • Decision trees and rules are human understandable
 • Handle noisy data fairly well
 • Incremental learning
 • Online learning is feasible

• **Cons**
 • Need many, good examples
 • Overfitting can be an issue
 • Learned decision trees may contain errors

• **Challenges**
 • Picking the right features
 • Getting good examples
References

• Quinlan: Combining instance-based and model-based learning, 10th International Conference on Machine Learning, 1993.
• AI Game Programming Wisdom.
• AI Game Programming Wisdom 2.